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ABSTRACT 30 

RNA interference (RNAi) is a powerful genetic tool to accelerate research in 31 

plant biotechnology and to control biotic stresses by manipulating target gene 32 

expression. However, the potential of RNAi in wheat to efficiently and durably 33 

control the devastating stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), 34 

remained largely under explored, so far. To address this issue, we generated 35 

transgenic wheat lines expressing double-stranded RNA targeting PsFUZ7 36 

transcripts of Pst. We analyzed expression of PsFUZ7 and related genes, and 37 

resistance traits of the transgenic wheat lines. We show that PsFUZ7 is an 38 

important pathogenicity factor which regulates infection and development of 39 

Pst. A PsFUZ7 RNAi construct stably expressed in two independent transgenic 40 

wheat lines confers strong resistance to Pst. Pst hyphal development is 41 

strongly restricted, and necrosis of plant cells in resistance responses was 42 

significantly induced. We conclude that trafficking of RNA molecules from 43 

wheat plants to Pst may lead to a complex molecular dialogue between wheat 44 

and the rust pathogen. Moreover, we confirm the RNAi-based crop protection 45 

approaches can be used as a novel control strategy against rust pathogens in 46 

wheat.  47 
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INTRODUCTION 48 

Global wheat yields are estimated to be reduced by 3% to over 90% per 49 

year because of the obligate biotrophic pathogen P. striiformis f. sp. tritici (Pst), 50 

jeopardizing global food security (Wellings, 2011; Chen, 2014). It is evident 51 

that Pst constitutes a significant threat to wheat production worldwide. 52 

Currently, approaches to manage this disease rely on cultivar resistance 53 

coupled with fungicide application (Chen, 2014). However, driven by a greater 54 

need for wheat production (Singh et al., 2011), the necessity for environmental 55 

protection (Ishii, 2006), the constant evolution of virulence in rust fungi (Chen 56 

et al., 2009), and the loss of natural resistance in wheat cultivars (Mcintosh et 57 

al., 1995), innovative alternative approaches to control rust disease are 58 

urgently required. To date, several technologies have been used to transiently 59 

silence Pst genes to restrict pathogen development (Panwar et al., 2013; Fu et 60 

al., 2014). However, the pathogen is capable of overcoming this transient 61 

resistance barrier, and hence, strategies conferring durable resistance to Pst 62 

must be sought.  63 

A powerful genetic tool, RNA interference (RNAi), a conserved eukaryotic 64 

mechanism that performs a crucial role in gene regulation, has been used to 65 

enhance crop resistance by silencing critical genes (Bartel, 2004; Baulcombe, 66 

2004). A key conserved trait of RNAi is the cleavage of precursor double 67 

stranded RNA (dsRNA) into short 21-24 nucleotide small interfering RNAs 68 

(siRNAs) by a ribonuclease called DICER, or Dicer-like (DCL) (Fagard et al., 69 

2000). siRNAs are then incorporated into the RNA-induced silencing complex 70 

(RISC) containing an Argonaute (AGO) protein (Fagard et al., 2000). 71 

Subsequently, specific degradation of the target mRNA sharing sequence 72 

similarity with the inducing dsRNA takes place (Ghildiyal and Zamore, 2009; 73 

Liu, 2010). Numerous reports have demonstrated the efficiency of RNAi to 74 

improve control of bacteria, viruses, fungi, insects, nematodes, and parasitic 75 

weeds (Saurabh et al., 2014). Insects feeding on transgenic plants carrying 76 

RNAi constructs against genes of the pest were severely constrained in their 77 
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development (Huang et al., 2006; Baum et al., 2007; Mao et al., 2007). In 78 

genetically engineered RNAi crop plants, defense against fungi was 79 

substantially enhanced (Nowara et al., 2010; Koch et al., 2013; Ghag et al., 80 

2014). Host-Induced Gene Silencing (HIGS) of the Fusarium cytochrome P450 81 

lanosterol C-14α-demethylase (CYP51) gene, which is essential for ergosterol 82 

biosynthesis, confers resistance of barley to Fusarium species (Koch et al., 83 

2013). During interaction of the host with the pathogen Blumeria graminis, 84 

siRNA molecules are exchanged and restrict fungal development in plants 85 

carrying RNAi constructs targeting fungal transcripts (Nowara et al., 2010).  86 

Mitogen-activated protein kinase (MAPK) cascades regulate a variety of 87 

cellular processes in response to extracellular and intracellular stimuli (Van 88 

Drogen and Peter, 2002). In our study, the MAPK kinase gene PsFUZ7, which 89 

was shown to play an important role in Pst virulence by regulating hyphal 90 

morphology and development, was selected as target for RNAi. Our results 91 

indicate that the expression of RNAi constructs in transgenic wheat plants 92 

confers strong and durable resistance to Pst, along with a severe restriction of 93 

Pst development. This efficient inhibition of disease development suggests 94 

that HIGS is a powerful strategy to engineer transgenic wheat resistant against 95 

the obligate biotrophic pathogen Pst and has potential as an alternative 96 

approach to conventional breeding, or chemical treatment for the development 97 

of environmentally friendly and durable resistance in wheat and other food 98 

crops.  99 

 100 

  101 
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RESULTS  102 

Three MAPK Cascade Genes are Highly Induced during Pst 103 

Differentiation  104 

During our search for potential genes that regulate the development of Pst, 105 

we identified and cloned five candidate genes from the virulent Pst strain 106 

CYR32. These genes were found to be orthologs of Ustilago maydis MAPK 107 

signaling pathway-related genes (Supplemental Table S1). Transcript profiles 108 

assayed by quantitative real-time PCR (qRT-PCR) show that PsKPP4, 109 

PsFUZ7, PsKPP6, and PsCRK1 are all induced at early differentiation stages, 110 

whereas PsKPP2 is significantly down-regulated during this phase (Fig. 1). 111 

Transcript levels of PsKPP4, PsFUZ7, and PsKPP6 are increased more than 112 

30-fold during the very early stage of colonization of wheat by urediospores 113 

(12 h), and the time of primary haustorium formation (18 h), the stage 114 

indicating successful colonization of the host. PsKPP4 and PsFUZ7 are 115 

induced more than 20-fold during secondary hyphae formation (48-72 h), the 116 

stage essential for hyphal expansion. These results suggest that PsKPP4, 117 

PsFUZ7, and PsKPP6 participate in early Pst development. Therefore, these 118 

genes were chosen as target genes for subsequent virus-induced gene 119 

silencing (VIGS) experiments. 120 

Transient Silencing of PsFUZ7 Significantly Inhibits Growth of Pst 121 

VIGS mediated by the barley stripe mosaic virus (BSMV) has been 122 

established in barley and wheat (Holzberg et al., 2002; Scofield et al., 2005). 123 

To confirm the effect of silencing PsKPP4, PsFUZ7, and PsKPP6 during the 124 

interaction between wheat and Pst strain CYR32, two ~250-bp silencing 125 

sequences of each gene were derived from the 5’- and the 3’-prime end of the 126 

gene to generate different BSMV constructs (Supplemental Table S2), 127 

respectively. At 14 days post inoculation (dpi) with Pst, generation of uredia is 128 

suppressed in plants inoculated with BSMV-silencing sequences, and those 129 

carrying BSMV:PsFUZ7-as constructs show the highest inhibition of uredia 130 

 www.plantphysiol.orgon November 5, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


7 
 

formation (Fig. 2A). qRT-PCR analysis of total RNA isolated from silenced 131 

leaves sampled at 2 and 7 dpi, revealed effective reductions in transcript levels 132 

of the fungal target genes (Fig. 2B). Values are expressed relative to the 133 

endogenous Pst reference gene EF-1 (PsEF-1), with the empty vector 134 

(BSMV:γ) set to 1 (Yin et al., 2011). To demonstrate the specificity of VIGS 135 

against PsKPP4, PsFUZ7 and PsKPP6, the expression of their closest 136 

homologs at 2 dpi was also examined (Supplemental Fig. S1 and 137 

Supplemental Table S3).  138 

Microscopic analyses revealed that initial haustorium formation and 139 

elongation of secondary hyphae are both reduced in BMSV:PsFUZ7-1as and 140 
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BMSV:PsFUZ7-2as treated plants (Fig. 3). PsFUZ7-2as-silenced plants exhibit 141 

a more pronounced inhibition of haustorium formation and mycelial extension 142 

with decreased hyphal length and reduced size of infection areas than other 143 

silencing constructs. As a result, fewer uredia were produced in plants carrying 144 

BMSV:PsFUZ7-2as (Fig. 2C). This result indicates that PsFUZ7 plays an 145 

important role in mycelial growth and development which eventually leads to a 146 

significant inhibition of uredia generation and virulence of Pst.  147 

The Function of PsFUZ7 is Conserved among Phytopathogenic Fungi 148 

PsFUZ7 contains the typical domain structure of MAPKKs, including 12 149 
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catalytic kinase subdomains (Hamal et al., 1999), two putative phosphorylation 150 

sites, an activation loop (S/TXXXS/T) as the putative target of an upstream 151 

MAPKKK, and a DEJL motif (K/R-K/R-K/R-X (1-5)-L/I-X-L/I) at the N-terminus, 152 

which is known to function as a MAPK docking site (Supplemental Fig. S2) 153 

(Chen et al., 2012). Sequence alignments indicate that PsFUZ7 shares 70 %, 154 

82 %, and 84 % sequence identity with orthologs from Magnaporthe oryzae, P. 155 

triticina, and P. graminis f. sp. tritici, respectively. Consistent with this high 156 

similarity, PsFUZ7 partially complements the Magnaporthe oryzae mst7 157 

mutant in appressorium formation and plant infection (Supplemental Fig. S3). 158 

Overexpression of PsFUZ7 in fission yeast results in morphological changes 159 
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and an increased sensitivity to environmental stresses (Supplemental Fig. S4). 160 

In accordance with these in vivo data, in vitro assays revealed that stripe rust 161 

urediospores treated with the kinase inhibitor U0126 germinate at a lower rate 162 

and produce a higher frequency of abnormally differentiated and clearly 163 

distorted germ tubes or spherical structures along the mycelial apex at 3 h and 164 

6 h post-treatment (Supplemental Fig. S5). Overall, these results strengthen 165 

the view that PsFUZ7 may have important roles in pathogenesis. 166 

RNAi Constructs in Transgenic Wheat Plants Detected by Southern Blot 167 

and PCR 168 

To test whether the stable expression of PsFUZ7 silencing constructs can 169 

confer resistance to Pst, the selected, most effective RNAi construct, a 759-bp 170 

cassette containing an inverted repeat derived from PsFUZ7-2as was 171 

introduced into vector pAHC25, and transformed into Triticum aestivum L. cv. 172 

Xinong1376 (XN1376) by particle bombardment (Supplemental Fig. S6A). The 173 

PsFUZ7-RNAi construct in transgenic wheat plants was detected by PCR 174 

(Supplemental Fig. S6B), and the stable integration of RNAi constructs into the 175 

wheat genome was verified by Southern blot with specific probes 176 

(Supplemental Fig. S6C). No consecutive 21-24 nucleotide (nt) sequences 177 

were found in wheat and/or other plant or fungal species for PsFUZ7 178 

(Supplemental Table S4). To identify potential off-target sites, BLASTN was 179 

performed using the target sequence. Among all putative off-targets examined, 180 

12 sequences were detected in wheat and Pst at one or more locus with a 1-3 181 

bp mismatch, respectively (Supplemental Fig. S7 and S8; Supplemental Table 182 

S2). As shown in Supplemental Fig. S7 and S8, no significant down-regulation 183 

was found in the potential putative off-target genes. Transgenic wheat lines 184 

that contained RNAi constructs, displayed normal morphology, and set viable 185 

seeds were assayed for resistance against Pst.  186 

Two T3 Transgenic Wheat Lines Confer Strong Resistance to Pst 187 

 www.plantphysiol.orgon November 5, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


11 
 

Two independent transgenic lines, L65 and L91, which were highly effective 188 

in restricting the spread of Pst, were selected in T3 generations and examined 189 

at 16 dpi (Fig. 4A). To verify whether this phenotype is caused by the 190 

expression and processing of siRNA, Northern blot analysis was performed 191 

with RNA extracted from 14-day-old seedlings of the T3 transgenic lines, using 192 

the same specific probes as those used for Southern blot analyses. As shown 193 

in Fig. 4B, a single band with the expected size of ~21 nt is present in 194 

transgenic lines L65 and L91, while no signal can be detected in control plants, 195 

documenting the presence of PsFUZ7 siRNAs in the transgenic lines. To 196 

further confirm that the expression of siRNA in wheat is able to silence 197 

PsFUZ7, qRT-PCR was performed to analyze transcript abundance of 198 

PsFUZ7 in Pst-infected transgenic lines at 3, 10, 16 dpi. PsFUZ7 transcripts in 199 

L65 were reduced by 42.2 %, 48.3 %, and 49.3 % compared to control lines at 200 

3, 10, 16 dpi, respectively. Similarly, PsFUZ7 transcripts were reduced by 201 

41.7 %, 69.9 % and 74.8 % in L91 (Fig. 4C). According to the McNeal’s 202 

uniform scale system (McNeal et al., 1971) the host response class of 203 

transgenic lines L65 and L91 ranged from 1 to 3, indicating high or medium 204 

resistance to Pst. By contrast, the response of control lines was in the 6 to 7 205 

class, which along with abundant sporulation and little necrotic/chlorotic stripes 206 

indicates susceptibility to Pst (Fig. 4D). Biomass analyses showed that both 207 

transgenic lines exhibit significant reductions in fungal biomass (P < 0.01) of 208 

68-71 % and 50-57 %, respectively, at 16 dpi with Pst (Fig. 4E). In addition, 209 

compared with control plants, transcript levels of some MAPK signal 210 

pathway-related genes (Fig. 5A), are reduced in Pst-infected transgenic lines 211 

L65 and L91, while some plant defense-related genes are up-regulated (Fig. 212 

5B). These results demonstrate that transgenic wheat lines carrying RNAi 213 

constructs can produce and process siRNA molecules which efficiently 214 

down-regulate PsFUZ7 in Pst, and also affect the expression of some related 215 

genes in Pst and wheat. 216 

 217 
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Pst Development and Growth is Severely Suppressed in Transgenic 218 

Wheat Lines Carrying PsFUZ7 RNAi Constructs 219 

To investigate Pst development in transgenic wheat lines L65 and L91, 220 

fungal structures were stained with Wheat Germ Agglutinin (WGA) for 221 

microscopic observation. Pst in transgenic lines L65 and L91 exhibits poorly 222 

developed hyphae with minimal haustorium formation, while a widespread 223 

hyphal network with numerous haustoria in mesophyll cells is observed in 224 

control plants at 10 dpi with CYR32 (Fig. 6A-C). Notably, large areas of 225 

hypersensitive cell death are induced in transgenic lines L65 and L91 (Fig. 6A 226 

and D). The observed restriction of fungal development within 227 
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siRNA-producing host tissue is consistent with the measured reduction of 228 

fungal biomass and uredia formation.  229 

To further visualize mycelial growth in Pst-infected wheat tissue, 230 

transmission electron microscopy was used to examine fungal morphology 231 

and wheat cells (Fig. 6E). Disassembly of the nuclear envelope and shrinkage 232 

of protoplasts are observed in Pst cells during colonization of the tissue of 233 

transgenic plants L65 and L91 (Fig. 6E). In addition, plant plasma membranes 234 

were ruptured where they contacted Pst hyphae. By contrast, both fungal and 235 

host cells developed normally in control lines (Fig. 6E). These results indicate 236 

that RNAi molecules stably expressed in transgenic wheat plants are able to 237 
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confer genetically stable resistance to rust fungi by targeting fungal PsFUZ7 238 

transcripts resulting in the suppression of Pst growth.   239 

 240 

  241 
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DISCUSSION 242 

Currently, the most effective strategy to control stripe rust disease is the 243 

application of fungicides. However, fungicide residues on food products remain 244 

a threat to human health (Singh et al., 2015). Traditional plant breeding to 245 

improve crop traits is another effective strategy but is time-consuming and 246 

labor intensive (Saurabh et al., 2014). During the last two decades, research 247 

efforts have focused on strategies to convert to biotechnological approaches 248 

for crop improvement. The emergence of RNAi, which can be employed to 249 

manipulate gene expression to improve quality traits in crops, offers potential 250 

promise (Baulcombe, 2004; Saurabh et al., 2014). However, it remained 251 

unclear whether Pst has a functional silencing system that can be induced in 252 

transgenic wheat carrying RNAi constructs. Our approach was to determine 253 

whether the expression of RNAi molecules derived from the MAPK kinase 254 

gene PsFUZ7 in transgenic wheat could confer genetically stable resistance to 255 

rust pathogens of wheat. PsFUZ7 was selected as the target gene for silencing 256 

because it is expressed at high levels during penetration and parasitic stages 257 

of the Pst-wheat interaction and showed the most positive phenotype in virus 258 

induced transient silencing assays compared with two other kinases (Fig. 1). In 259 

the fungal kingdom, MAPK kinases are evolutionarily conserved proteins that 260 

function as key signal transduction components regulating a series of cellular 261 

processes (Hamel et al., 2012). In the functional screening of candidate genes 262 

for the generation of efficient RNAi sequences, supplementary assays 263 

confirmed that the PsFUZ7 is functionally conserved with MAPKKs from other 264 

fungi and participates in development and morphogenesis critical for virulence 265 

of Pst. Off-target effects, resulting in the knockdown of other transcripts with 266 

limited similarity to siRNA, often occur during the application of RNAi in plants 267 

and humans (Birmingham et al., 2006; De, 2014). In our study, no off-target 268 

effects were detected, indicating that the PsFUZ7 fragment selected to 269 

generate RNAi constructs could be an ideal target for control of Pst via RNAi 270 

(Supplemental Table S3).  271 
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The present study is devoted to illustrate an efficient alternative approach to 272 

conventional breeding and fungicide treatment for fungal disease control. As 273 

expected, transgenic lines carrying PsFUZ7 RNAi constructs exhibit strong 274 

and genetically stable resistance to Pst in T3 generations (Fig. 4A). Generally, 275 

the T3 generation is considered the initial true transgenic line in hexaploid 276 

wheat (Cheng et al., 2015a). Histological observations revealed differential 277 

hyphal growth in transgenic lines carrying PsFUZ7 RNAi constructs compared 278 

to the control lines (Fig. 6). Previous studies demonstrated the efficient 279 

transport of siRNA molecules from transgenic plant cells to the colonizing 280 

pathogen (Nowara et al., 2010; Koch et al., 2013), and that the transported 281 

siRNAs interfere with the target gene, affecting fungal growth through an 282 

amplification of RNAi molecules and resulting in a resistance response 283 

(Panwar et al., 2013; Cheng et al., 2015a). The suppression of Pst growth in 284 

our study correlates with the production of siRNAs corresponding to the 285 

targeted PsFUZ7 sequences (Fig. 4B), as well as a significant reduction of 286 

PsFUZ7 transcripts and fungal biomass (Fig. 4C and E).  287 

To explore the basis for the induction of necrosis in plant cells, a schematic 288 

presentation for potential processes triggered by silencing PsFUZ7 via the 289 

expression of siRNA in transgenic wheat is presented (Fig. 7). In the plant 290 

immunity system, two main phases, pathogen-associated molecular patterns 291 

(PAMPs) triggered immunity (PTI) and effector-triggered immunity (ETI) are 292 

well known (Jones and Dangl, 2006; Boller and Felix, 2009; Tsuda et al., 293 

2010). Cell death induced in transgenic wheat lines is in accordance with a 294 

hypersensitive response (HR) that is expressed in pathogen specific ETI 295 

(Jones and Dangl, 2006; Thomma et al., 2011). In U. maydis, the kinase CRK1 296 

downstream of the MAPK cascade negatively regulates transcription and 297 

secretion of some effector proteins (Bielska et al., 2014). In our study, we 298 

verified the severe down-regulation of PsCRK1 transcripts (Fig. 5) and the 299 

interaction between PsFUZ7 and PsCRK1 via the yeast-two hybrid assay 300 

(Supplemental Fig. S9). Considering these results, we propose that the 301 
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expression of the siRNA target PsFUZ7 influences effectors in Pst and triggers 302 

ETI in transgenic XN1376 wheat (Fig. 7). In addition, many features associated 303 

with fungal pathogenesis are dependent on signaling through MAPK 304 

cascades, including the biosynthesis, export, and secretion of different factors 305 

(Hamel et al., 2012). HIGS of PsFUZ7 may impact biosynthesis or secretion of 306 

Pst components that may function as PAMPs in PTI (Chisholm et al., 2006).  307 

Our study has confirmed that the expression of siRNA derived from a Pst 308 

pathogenicity gene in wheat is an effective strategy to control rust disease. 309 

This approach provides a huge reservoir of novel resources to enhance 310 

resistance to abiotic and biotic stress by the production of transgenic crops 311 
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that are environmentally friendly.  312 

 313 

MATERIALS AND METHODS  314 

Fungi, Plants and Culture Conditions  315 

Chinese Yellow Rust isolate 32 (CYR32), which is a predominant race in 316 

China (Wan et al., 2007), was used throughout this study. Triticum aestivum L. 317 

cv. Suwon11 (Su11) that is susceptible to CYR32 was used in qRT-PCR and 318 

VIGS assays. Plant cultivation and inoculation with Pst were performed as 319 

described previously (Kang et al., 2002). XN1376, susceptible to CYR32 at the 320 

seedling stage, was grown in an experimental field of Northwest A&F 321 

University (Yangling, China) and used for transgenic wheat cultivars. 322 

VIGS and RNAi Vector Construction 323 

Two PsFUZ7 fragments were used in BSMV-induced gene silencing 324 

experiments (Supplemental Table S2). PsFUZ7-1as contains 218 bp of the 325 

coding sequence from the 5’ region, whereas PsFUZ7-2as encompasses 326 

300-bp coding sequence in the 3’ UTR. The two fragments were cloned into 327 

BSMV as previously described (Holzberg et al., 2002). The hpRNA cassette 328 

contains the Zea mays alcohol dehydrogenase 1 (adh1) gene as intron flanked 329 

by the 300-bp fragment of PsFUZ7 in sense and anti-sense orientation. The 330 

expression cassette treated with SmaI and SacI was cloned into the binary 331 

vector pAHC25 using the same restriction sites (Christensen et al., 1992; Vasil 332 

et al., 1993). The bar gene in the T-DNA of the vector as selection gene is 333 

driven by the maize ubiquitin promoter, and the hpRNA cassette is also under 334 

control of the Ubi promoter and terminated by the NOS terminator. The 335 

resulting vectors were pAHC25-hpPsFUZ7 for silencing PsFUZ7, and the 336 

empty vector pAHC25 containing only the bar gene without a silencing 337 

cassette.  338 

Total DNA, RNA Extraction, PCR and qRT-PCR 339 
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Genomic DNA was extracted by the CTAB method (Porebski et al., 1997). 340 

RNA was isolated with TRIZOL following the manufacturer’s instructions 341 

(Invitrogen, Carlsbad, CA, USA) and transcribed into cDNA also following the 342 

manufacturer’s directions (Promega, Madison, WI, USA). In each transgenic 343 

generation, genomic DNA from leaves of transgenic wheat and control plants 344 

were identified by PCR with two pairs of specific primers (TFUZ-F/R and 345 

Bar-F/R, Supplemental Table S2) to detect the presence of the 346 

sense-intron-antisense cassette in transgenic plants and the bar gene. To 347 

measure fungal biomass, relative quantification of the single-copy target genes 348 

in PsEF-1 and TaEF-1 (elongation factor-1) was carried out (Panwar et al., 349 

2013). Total genomic DNA of the wheat cultivar XN1376 or the Pst isolate 350 

CYR32 was used to prepare standard curves derived from at least six serial 351 

dilutions for each. The correlation coefficients for the analysis of the dilution 352 

curves were above 0.99. The relative quantities of the PCR products of 353 

PsEF-1 and TaEF-1 in mixed/infected samples were calculated using the 354 

gene-specific standard curves to quantify the Pst and wheat genomic DNA, 355 

respectively. 356 

To measure the transcript levels of PsFUZ7 by qRT-PCR, urediospores and 357 

in vivo germ tubes of CYR32, plant tissue of Su11 infected with CYR32 at 358 

6,12,18, 24, 36, 48, 72, 120, 168, 216 hours post inoculation (hpi) and 359 

urediospores (US) were sampled. To analyze VIGS efficiency, qRT-PCR was 360 

carried out 48 and 168 hpi with the CYR32 isolate. For transgenic efficiency 361 

assay, total transgenic RNA for quantitative real-time PCR was extracted from 362 

the second leaves of wheat at 3 dpi, 10 dpi, and 16 dpi with the CYR32 isolate. 363 

All qRT-PCR was performed in a 20-μL reaction mixture containing LightCycler 364 

SYBR Green I Master Mix (Roche, Basel, Switzerland), 10 pmol each of the 365 

forward and reverse gene-specific primers (Supplemental Table S2), and 2 μl 366 

of diluted cDNA (1:5) that was reverse transcribed. PCR was run in a 367 

LightCycler 480II (Roche) under the conditions previously described (Cheng et 368 

al., 2015b). Each sample was analyzed in three biological replications, and 369 
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each PCR analysis included three technical repeats. The data were 370 

normalized to the PsEF-1 expression level. 371 

 372 

BSMV-mediated Gene Silencing 373 

Capped in vitro transcripts were prepared from linearized plasmids 374 

containing the tripartite BSMV genome (Petty et al., 1990) using the RiboMAX 375 

TM Large-Scale RNA Production System-T7 and the Ribom7G Cap Analog 376 

(Promega), according to the manufacturers’ instructions. PsFUZ7-1as and 377 

PsFUZ7-2as were used to inoculate wheat seedlings, while BSMV:TaPDS 378 

(TaPDS: wheat phytoene desaturase gene) and BSMV:γ were used as 379 

controls for the BSMV infection. Mock plants were inoculated with 1xFES 380 

buffer as the negative control. Wheat seedlings with three leaves were used 381 

for inoculation with BSMV, and BSMV-infected wheat plants were kept in a 382 

growth chamber at 23 ± 2°C. The fourth leaves were further inoculated with 383 

fresh CYR32 urediospores at 10 d after virus inoculation, and the plants were 384 

then maintained at 16 ± 2°C (Wang et al., 2007). The phenotypes of the fourth 385 

leaves were recorded and photographed at 14 days after inoculation with Pst. 386 

The number of uredia was counting a 1 cm2 area at 14 dpi with Pst from at 387 

least five randomly treated plants. 388 

Cytological Observation of Fungal Growth and Host Responses  389 

Leaf segments (1.5 cm long) were cut from inoculated leaves, fixed and 390 

decolorized in ethanol/trichloromethane (3:1 v/v) containing 0.15% (w/v) 391 

trichloroacetic acid for 3-5 days, and then treated as previously described 392 

(Cheng et al., 2015b). To obtain high quality images of Pst infection structures 393 

in wheat leaves, wheat germ agglutinin conjugated to Alexa-488 (Invitrogen) 394 

was used as described (Ayliffe et al., 2011). Stained tissue was examined 395 

under blue light excitation (excitation wavelength 450-480 nm, emission 396 

wavelength 515 nm). Necrotic areas were observed via the auto-fl Stained t of 397 

attacked mesophyll cells. Infection sites (30-50) from three leaves were 398 
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examined to record the number of haustorial mother cells, haustoria, hyphal 399 

branches, hyphal length and infection areas of hyphae or necrotic area of host 400 

cells in infected wheat per infection unit. The experiments were conducted in a 401 

completely randomized block design with three replications. The presence of a 402 

substomatal vesicle was defined as an established infection unit. Hyphal 403 

length of Pst was measured from the substomatal vesicle to the apex of the 404 

longest infection hypha. All microscopic observations were conducted with an 405 

Olympus BX-51 microscope (Olympus, Tokyo, Japan). 406 

To observe the ultrastructure of the fungus, wheat leaves bearing uredia 407 

were cut into 0.5x0.5 cm pieces, immersed in 4% glutaraldehyde in 0.2 M 408 

phosphate buffer, pH 6.8, and fixed at 4 °C overnight (Zhan et al., 2014). Fixed 409 

leaf samples were washed four times with phosphate buffer for 15 min each. 410 

Thereafter, samples were successively dehydrated for 30 min each in 30, 50, 411 

70, 80 and 90% ethanol, and finally three times in 100% ethanol. The 412 

dehydrated samples were treated with isoamyl acetate twice for 20 min each. 413 

After drying in a CO2 vacuum, the samples were sputter-coated with gold in an 414 

E-1045 (Hitachi, Tokyo, Japan) and then examined with an S-4800 SEM 415 

(Hitachi). 416 

Plant Transformation 417 

Immature embryos were isolated from spikes of XN1376 at 13-14 day post 418 

anthesis in Yangling, Shaanxi. The isolated wheat embryos were cultured on 419 

SD2 medium in darks for 7-10 days for calli induction (Li et al., 2008). Then the 420 

calli were moved to SD2 medium added with 0.2 mol/l mannitol and 0.2 mol/l 421 

sorbitol. After 4-6 hours, the calli were bombarded with 1-μm gold particles 422 

coated with 1.5 μg of recombinant pAHC25 DNA using a PDS-1000 He biolistic 423 

gun (BioRad, Hercules, CA, USA) at the pressure of 1,100 psi (Vasil et al., 424 

1993; Li et al., 2008). The bombarded calli were transferred onto osmotic 425 

pressure medium described above for 16-18 h. Regeneration and selection 426 

were carried out in the corresponding medium in the presence of 3-5 mg/l 427 

 www.plantphysiol.orgon November 5, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


22 
 

bialaphos for the next few weeks, and the surviving plantlets with strong roots 428 

and shoots were planted in a greenhouse in pots filled with soil (Cheng et al., 429 

2015a). 430 

 431 

Northern Blot  432 

About 30 μg of total RNA was subjected to electrophoresis on a denaturing 433 

19% polyacrylamide gel, transferred to Nytran Super Charge Nylon 434 

Membranes (Schleicher und Schuell MicroScience GmbH, Dassel, Germany) 435 

and crosslinked using a Stratagene UV Crosslinker. The membranes were 436 

prehybridized with PerfectHyb TM (Sigma-Aldrich, St. Louis, MO, USA), and 437 

hybridized with the P32-labeled DNA probes overnight in PerfectHyb buffer. 438 

The membranes were autoradiographed on X-OMAT BT film (Carestream 439 

Health, Rochester, NY, USA) after rinsing with washing buffer. U6 was used as 440 

a loading control. The probe sequences are listed in Supplemental Table S2. 441 

 442 

FIGURE LEGENDS  443 

Figure 1. Transcript profiles of five MAPK cascade genes at different 444 

Pst infection stages. Wheat leaves (Su11) were inoculated with fresh 445 

urediospores (CYR32) and kept in the dark and under high humidity for 24 h. 446 

Inoculated leaves were sampled at different time points according to the 447 

differentiation stage of Pst. Gene expression levels were normalized to the 448 

expression level of PsEF-1. Results are expressed as means ± standard errors 449 

of three biological replicates. US: urediospores; 6 - 264 h: 6 - 264 hpi with 450 

CYR32. PsKPP4: MAP kinase kinase kinase gene; PsFUZ7: MAP kinase 451 

kinase gene; PsKPP2, PsKPP6 and PsCRK1: MAP kinase genes. 452 

Figure 2. Functional assessment of PsKPP4, PsFUZ7 and PsKPP6 in 453 

the wheat-Pst interaction by virus-induced gene silencing. A, Phenotypes 454 

of fourth leaves inoculated with CYR32 at 14 dpi. Plants were pre-inoculated 455 

 www.plantphysiol.orgon November 5, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


23 
 

with FES buffer (mock), BSMV:TaPDS, BSMV:γ, BSMV:PsKPP4-1as, 456 

BSMV:PsKPP4-2as, BSMV:PsFUZ7-1as, BSMV:PsFUZ7-2as, 457 

BSMV:PsKPP6-1as, or BSMV:PsKPP6-2as, respectively. B, Relative 458 

transcript levels of PsKPP4, PsFUZ7 and PsKPP6 in knockdown plants 459 

inoculated with CYR32 at 2 and 7 dpi. Wheat leaves inoculated with BSMV:γ 460 

and sampled after inoculation with CYR32 were used as controls. Data were 461 

normalized to the transcript level of PsEF-1. Asterisks indicate P < 0.05, 462 

double asterisks indicate P < 0.01. C, Quantification of uredial density in 463 

silenced plants 14 dpi with CYR32. Differences were assessed using Student’s 464 

t-tests. Values represent the means ± standard errors of three independent 465 

samples. Asterisks indicate P < 0.05, double asterisks indicate P < 0.01. 466 

Figure 3. Epifluorescence observation of fungal growth in wheat 467 

inoculated with BSMV and infected with CYR32. Leaves inoculated with 468 

CYR32 were sampled at 48 and 120 hpi and examined under an 469 

epifluorescence microscope after staining with wheat germ agglutinin 470 

conjugated to Alexa-488 (Invitrogen, Carlsbad, CA, USA). Treatments include 471 

A, BSMV:γ; B, BSMV:PsFUZ7-1as and C, BSMV:PsFUZ7-2as inoculated with 472 

CYR32 at 48 hpi (Bars = 10 μm); D, BSMV:γ; E, BSMV:PsFUZ7-1as and F, 473 

BSMV:PsFUZ7-2as inoculated with CYR32 at 120 hpi (Bars = 50 μm). SV, 474 

substomatal vesicle; HMC, haustorial mother cell; IH, infection hypha; H, 475 

haustorium. G, Average number of haustoria (H), hyphal branches (HB) and 476 

haustorial mother cells (HMC) in wheat inoculated with BSMV constructs and 477 

infected with CYR32 at 48 hpi. H, Average length of infection hyphae (IH) 478 

measured from their origin at the substomatal vesicle to the tip of the hypha in 479 

wheat inoculated with BSMV constructs and infected with CYR32 at 48 hpi. I, 480 

Infection area per infection site in wheat inoculated with BSMV and infected 481 

with CYR32 at 120 hpi. Differences in G-I were assessed using Student’s 482 

t-tests. Values represent the means ± standard errors of three independent 483 

samples. Asterisks indicate P < 0.05, double asterisks indicate P < 0.01. 484 
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Figure 4. Transgenic wheat lines L65 and L91 producing fungal 485 

gene-derived siRNAs induce silencing of the target mRNA and confer 486 

resistance to Pst infection. A, Phenotypes of transgenic lines L65, L91, and 487 

control (CK) in T2 and T3 generations. The second leaves of seedlings were 488 

inoculated with urediospores of CYR32 and photographed at 14 dpi with Pst in 489 

each generation. CK, transgenic lines carrying empty vector; L65 and L91, 490 

transgenic lines carrying RNAi constructs. B, Northern blot analysis of siRNA 491 

isolated from T3 transgenic wheat lines detected with specific probe derived 492 

from the PsFUZ7 fragment. U6 small nuclear RNA as a loading control. C, 493 

Relative expression of PsFUZ7 at 3, 10, and 16 dpi with CYR32 of T3 494 

transgenic wheat lines L65, L91, and control (CK). Data were normalized to 495 

PsEF-1, and the CK-10 d control was set to 1. D, Host response and infection 496 

types in T3 transgenic wheat lines L65, L91, and control (CK) assessed at 16 497 

and 25 dpi with CYR32. E, Fungal biomass measured using real-time PCR of 498 

total DNA extracted from wheat leaves infected with CYR32 at 14 dpi. Ratio of 499 

total fungal DNA to total wheat DNA was assessed using the wheat gene 500 

TaEF-1 and the Pst gene PsEF-1. Differences were assessed using Student’s 501 

t-tests. Values represent the means ± standard errors of three independent 502 

samples. Double asterisks indicate P < 0.01. 503 

Figure 5. Transcript profiles of genes involved in the MAPK pathway in 504 

Pst and defense-related genes in transgenic wheat plants L65 and L91. 505 

(A) Transcript abundance of MAPK-pathway related genes in Pst decreases 506 

except for PsKPP2. Wheat leaves were sampled at 3 and 10 dpi with Pst. Data 507 

were normalized to the PsEF-1 expression level, and the CK-10d control was 508 

set to 1. PsKPP4, MAP kinase kinase kinase; PsFUZ7, MAP kinase kinase; 509 

PsKPP2, PsKPP6 and PsCRK1, MAP kinase. (B) Transcript abundance of 510 

pathogenesis-related proteins or defense-related genes increase in transgenic 511 

wheat plants L65 and L91 at 3 and 10 dpi. TaPR1, pathogenesis-related 512 

protein 1; TaPR2, β-1,3-glucanase; TaPAL, phenylalanine ammonia lyase; 513 
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TaAPX, ascorbate peroxidase; TaNOX, NADPH oxidase; TaSOD, superoxide 514 

dismutase; TaPOD, peroxidase; TaCAT2, catalase 2; TaCAT1, catalase 1. The 515 

data were normalized to the TaEF-1 expression level, and the CK-10d control 516 

was set to 1. Values represent the means ± standard errors of three 517 

independent samples. 518 

Figure 6. Microscopic visualization of the in host-induced gene 519 

silencing effect targeting PsFUZ7 on colonization of wheat leaf tissue by 520 

Pst. A, Cytological observation of rust interaction with wheat by 521 

epifluorescence microscopy. Leaves inoculated with CYR32 were sampled at 522 

10 dpi. SV, substomatal vesicle; IH, infection hypha; HMC, haustorial mother 523 

cell; H, haustorium; NHC, necrotic host cell. Bars = 50 μm. B, Infection area 524 

per infection site is reduced in the transgenic lines L65 and L 91 infected with 525 

CYR32 compared with CK at 10 dpi. C, The formation of haustoria in lines L65 526 

and L91 is inhibited after inoculation with CYR32 compared with CK at 10 dpi. 527 

D, The necrotic area of plants from lines L65 and L91 is increased compared 528 

with CK at 10 dpi with CYR32. E, Cytological observations of Pst CYR32 and 529 

wheat by transmission electron microscopy at 10 dpi. HMC, haustorial mother 530 

cell; H, haustorium; RN, rust nucleus; Ch, chloroplast; Cy, cytoplasm; IH, 531 

infection hypha; HC, host cell; NHC, necrotic host cell; Org, organelle. Left 532 

bars = 2 μm, Right bars = 500 nm. Differences in D-E were assessed using 533 

Student’s t-tests. Values represent the means ± standard errors of three 534 

independent samples. Double asterisks indicate P < 0.01. 535 

Figure 7. Schematic presentation of possible molecular dialogues 536 

between transgenic lines carrying RNAi constructs and colonizing Pst. 537 

Fungal dsRNA, produced inside transgenic wheat cells, is cleaved by the plant 538 

silencing machinery using endonuclease-type DICER enzymes into small 539 

silencing molecules (siRNAs). These siRNAs are trapped by a complex of 540 

proteins, and transported to the paramural space. After passing the haustorial 541 

cell wall, the silencing molecules trigger RNAi of their mRNA targets, and may 542 
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act as primers leading to the activation of systemic silencing signals, thus 543 

inducing the immunity system of transgenic wheat by mechanisms including 544 

ETI and PTI. 545 

 546 

SUPPLEMENTAL DATA 547 

Supplemental Figure S1. Relative transcript levels of (A) PsKPP4, (B) 548 

PsFUZ7, and (C) PsKPP6 homologs in respective knockdown plants 549 

inoculated with CYR32 at 2 dpi.  550 

Supplemental Figure S2. Multiple sequence alignment of FUZ7 orthologs. 551 

Supplemental Figure S3. Complementation of the mst7 mutant of 552 

Magnaporthe oryzae with PsFUZ7.  553 

Supplemental Figure S4. Overexpression assay of PsFUZ7 in the fission 554 

yeast SP-Q01.  555 

Supplemental Figure S5. Effect of the immuno-suppressive inhibitor U0126 556 

on germination of Pst.  557 

Supplemental Figure S6. Structure of the pAHC25-PsFUZ7 RNAi construct 558 

and molecular identification in transgenic plants.  559 

Supplemental Figure S7. Transcript abundance of putative off-target in Pst 560 

after L65, L91 and CK inoculated with CYR32 at 10dpi.  561 

Supplemental Figure S8. Transcript abundance of putative off-target in wheat 562 

after L65, L91 and CK inoculated with CYR32 at 10dpi.  563 

Supplemental Figure S9. Y2H assay using MAPK cascade genes.  564 

Supplemental Table S1. MAPK orthologs identified in Pst. 565 
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Supplemental Table S4. Prediction of PsFUZ7 off-target transcripts. 568 
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