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Plant virus diseases, known as ‘plant cancer’, are the second largest plant diseases after plant fungal diseases,
which have caused great damage to agricultural industry. Since now, the most direct and effective method for
controlling viruses is chemotherapeutics, except for screening of anti-disease species. As the occurrence and
harm of plant diseases intensify, production and consumption of pesticides have increased year by year, and
greatly contributed to the fertility of agriculture, but also brought a series of problems, such as the increase of
drug resistance of plant pathogens and the excessive pesticide residues. In recent years, biopesticide, as charac-
terized by environmentally safe due to low residual, safe to non-target organism due to better specificity and not
as susceptible to produce drug resistance due to diverse work ways, has gained more attention than ever before
and exhibited great development potential. Nowmuch progress has beenmade about researches on newbiogen-
ic anti-plant-virus substances. The types of active components include proteins, polysaccharides and small mol-
ecules (alkaloids, flavonoids, phenols, essential oils) from plants, proteins and polysaccharides from
microorganisms, polysaccharides from algae and oligochitosan from animals. This study summarized the re-
search advance of biogenic anti-plant-virus substances in recent years and put forward their further develop-
ment in the future.
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1. Introduction

Plant virus diseases, known as ‘plant cancer’, are the second largest
plant diseases after plant fungal diseases, and have caused great damage
to agricultural industry. The International Committee on Taxonomy of
Viruses published a variety of 950 kinds of plant viruses throughout
theworld in the Ninth Report [1]. Plant viruses have been amajor prob-
lem in many crops, vegetables and ornamental plants, which seriously
affect product quality and yields of different crops (Fig. 1). Every year
throughout the world, plant viruses causes economic losses as much
as $60 billion, and the loss of food crop alone has reached to $20 billion
[2]. Once virus invades the host, its replication may be integrated with
the metabolism of the host plants. It often happens that drugs aiming
to inhibit replication of virusmay also do harm to the host, thus making
it difficult to control plant virus diseases.

Since now, the most direct and effective method for controlling vi-
ruses is chemotherapeutics, except for screening of anti-disease species.
As the occurrence and harm of plant diseases and insect pests intensify,
production and consumption of agricultural agents have increased year
by year, and greatly contributed to the fertility of agriculture. The 1930s
successively witnessed the new creation of high reactive DDT, organo-
chlorine and organophosphorus and so on. From then on, control of ag-
ricultural pathogens and pests was usually based on synthetic organic
pesticides. Pesticides have the advantages of increasing yield, saving
labor, reducing risk of fertilizer use [3], but have also brought a series
of problems, such as the increase of drug resistance of plant pathogens
and environmental pollution, the excessive pesticide residues, the ex-
plosion of poisoned human and animals and also the declining quality
of agricultural products [4,5]. But in 1960s, high toxicity and residue of
synthetic organic pesticides caused more and more serious conse-
quences and even threatened human health [4,5]. Carson [6]
exaggeratively described the damage of chemical pesticides to human
in her book Silent spring. Since then, there formed growing calls to im-
prove pesticides and preserve the ecological environment. In the 21st
century, with relative lower toxicity and less residue, chemical pesti-
cides are still predominantly used, and have becomeone of themost im-
portant inputs in crop, with the application amount up to 3 billion kg
annually [7]. Meanwhile, the problems caused by chemical pesticides
are still severe [8]. Pimentel [7] estimated the annual indirect costs
caused by pesticides in the U.S. of about $1.1 billion due to adverse im-
pact on public health, $1.5 billion due to pesticide resistance, $1.4 billion
due to crop loss, $2.2 billion due to bird loss, and $2 billion due to
ground water contamination.

In recent years, the rapid development of science and technology,
especially the development of biotechnology, biology and chemistry of
natural product, have greatly pushed forward the development of bio-
genic pesticides. Biopesticide, as characterized by environmentally
safe due to low residual, safe to non-target organism due to better spec-
ificity and not as susceptible to produce drug resistance due to diverse
and synergetic work ways, has gained more attention than ever before
and exhibited great development potential. The production of biopesti-
cide is currently growing at 16% per year, almost three times as that of
conventional agrochemicals which is growing at a rate of 5.5% per
year [9]. Now much progress has been made about researches on new
biogenic anti-plant-virus substances. The types of active components
include proteins, polysaccharides and small molecules (alkaloids, flavo-
noids, phenols, essential oils) from plants, proteins and polysaccharides
from microorganisms, polysaccharides from algae and oligochitosan
from animals [10–15]. These compounds are highly active, highly spe-
cific, with less environmental pollution and less residual. This study
summarized the research advance of biogenic anti-plant-virus sub-
stances in recent years and put forward their further development in
the future.

2. Biogenic anti-plant-virus substances from plants

2.1. Abundant plant resources provided for antiviral substances

In 1914, Allard firstly found that juice from pokeberry could sup-
press viral activity, from then on, focus was gradually shifted to looking
for antiviral substances from plant resources [16], which are rich, cost
effective and easy to develop. In the world, there are about more than
250,000 known plant species (but actually, maybe up to 500,000), of
which, about 10% plant species have been studied for their chemical
components [17]. Over the past 50 years, plants have provided key
structures and compounds that possess potential applications for indus-
trial development and used as cosmetics, nutritional supplements, fine
chemicals, agrochemicals and therapeutic agents for a variety of dis-
eases [18]. Grange et al. [19] reported that there are about 2400 plant
species which possess inhibition activities against detrimental bio-or-
ganisms. In 1989, out from more than 500 Chinese medicinal herbs,
Zhu and Qiu [20] screened 30 species that are antiviral effective against
cucumber mosaic virus (CMV), among which, the best control effects
were obtained from Forsythia suspensa Vahl, Rheum officinalle Bail and
Isatis tinctoria L extracts. Over the next 20 years, more and more scien-
tists carried out research on screening of plant materials with anti-
plant-virus effects, and many kinds of plants from different families
were gradually discovered to have the ability of inhibiting viruses, the
discovered families including Amaranthaceae, Nyctaginaceae,
Asteraceae, Chenopodiaceae, Asclepiadaceae, Polygonaceae,
Simaroubaceae, Acanthaceae, Liliaceae, Cruciferae, Leguminosae sp.,
Boraginaceae, Oleaceae, Taxaceae, Ranunculaceae, Juglandaceae,
Saxifragaceae, Theaceae, Schisandraceae, Cupressaceae, Labiatae and
Caryophyllaceae and so on [21–23]. Details about antiviral substances
from plant resources are shown in Table 1.

2.2. Antiviral components from plants

Plants contain plenty of polysaccharide, protein, alkaloids, anthocy-
anins, carotenoids, flavonoids, phenolic acids and many other phyto-
chemicals [24,25]. Some kinds of secondary metabolites with specific
bioactivities in plants are formed after a long period of competition for
survival and resistance to stresses. Swain [26] reported that there are
more than 400,000 kinds of secondary metabolites in plants, most of
which possess antiviral, anti-inflammation, antibacterial, antifungal
and anti-cancer activities [27]. And they are widely used in medicine
for health care and curing diseases [28,29]. Among all of the antiviral
substances, protein accounts for the largest number, followed by alka-
loids, flavonoids, phenols, essential oils and polysaccharides (see Table
1).

2.2.1. Proteins
Plants usually produce defense-related proteins upon infection with

pathogens such as viruses, fungi, oomycetes, and bacteria [30]. Several
types of these proteins have been classified into 17 families of patho-
genesis-related proteins (PRs) [31]. Others formed more specifically in



Fig. 1. The harm of virus diseases on different crops. A: Symptom of tomato spotted wilt virus (TSWV) on tomato fruit; B: symptom of zucchini yellowmosaic virus (ZYMV) on zucchini
fruit; C: symptom ofwatermelonmosaic virus (WMV) onwatermelon fruit. D: Symptom of barley yellowdwarf virus (BYDV) onwheat; E:wheat yellowmosaic virus (WYMV) onwheat;
F: symptom of applemosaic virus (ApMV) on apple plants; G: ZYMV on zucchini; H: symptom of potato leaf roll virus (PLRV) on potato; I: symptom of CMV on eggplant; J: WYMV in the
wheat field; K: symptom of rice black streaked dwarf virus (RBSDV) in the rice field; L: symptom of PLRV in the potato field.
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some certain plant species have also been reported, including cell wall
hydroxyproline-rich glycoproteins, amylases, polygalacturonase-
inhibiting proteins, glycine-rich proteins, lipase-like gene products,
lipoxygenases, lectins, cysteine-rich peptides and ribosome-inactivating
proteins (RIPs) [30]. Rosario et al. [31] reported the antiviral protein
Beetin 27, which is a ribosome-inactivating protein (RIP) from sugar
beet (Beta vulgaris L.) leaves and induced by virus and signaling com-
pounds such as hydrogen peroxide and salicylic acid (SA), displayed
biological activities in vitro that could result in a broad action against
several types of pathogens. Its role as a defense protein has been attrib-
uted to its RNA polynucleotide: adenosine glycosidase activity. Nandlal
et al. [32] Cloned and expressed another antiviral/ribosome-inactivating
protein from Bougainvillea xbuttiana and found it exhibited a high level
of resistance against tobacco mosaic virus (TMV). Frank et al. [33] also
found several elderberry ribosome-inactivating proteins with better
anti-TMV activity. Aparana et al. [34] purified CAP-34, a systemic



Table 1
Details about anti-plant-virus components extracted from all kinds of plants throughout the world.

Family Species Active ingredients Virus Reference

Phytolaccaceae Phytolacca americana L. Protein BMV, CMV [10,117]
Malvaceae Gossypium spp.

Gossypol

β-sitosterol

TMV, RBSDV, RSV [12]

Chenopodiaceae Beta vulgaris Protein TMV [31]
Spinacia oleracea L. Leaf juice TMV [118]
Chenopodium amaranticolor Leaf extract TNV [119]
Chenopodium album L Protein TMV [120]
Chenopodium serotinum L. Whole plant extract TMV [121]

Liliaceae Hosta plantaginea Aschers

7-deoxytrans-dihydronarciclasine

TMV [45,121]

Amaranthaceae Celosia cristata L. Glycoprotein TMV, SRV, CRSV [36]
Simaroubaceae Ailanthus altissima Leaf extract RSV [122]

Brucea javanica (L.) Merr.

Javanicolide E

Javanicolide F

Bruceine B

Bruceine D

TMV, CMV, PVY [46,47]

Picrasma quassioides TMV [48]

18 L. Zhao et al. / Pesticide Biochemistry and Physiology 135 (2017) 15–26



Table 1 (continued)

Family Species Active ingredients Virus Reference

1-carbomethoxy-β-carboline
Nyctaginaceae Mirabilis jalapa L. Protein, root extract TMV, CGMMV, PVY, TuMV, CMV [123]

Bougainvillea xbuttiana Protein TMV [32]
Taxaceae Taxus cuspidata Bark extract CMV [124]
Boraginaceae Lithospermum erythrorhizon

Propionylshikonin

TMV [125]

Polygonaceae Rheum palmatum L. Whole plant extract ToMV [126]
Asclepiadaceae Cynanchum komarovii Al

7-demethoxytylophorine

TMV [49]

Centaurea rupestris L.

Quercetagetin 3-methyl ether

TBSV [52]

Bidens pilosa Flavonoid glycoside TMV [127]
Arctium lappa L. Fructooligosaccharide TMV [78]
Eupatorium adenophorum Leaf extract TMV [115]
Artemisia argyi H. Lév. & Vaniot Essential oil TMV [62]
Lactuca tatarica (Linn.) C.A. Mey Whole plant extract TMV [21]
Syneilesis aconitifolia (Bge.) Maxim. Whole plant extract TMV [21]

Rosaceae Chaenomeles sinensis (Thouin) Koehne Fruit extract TMV [21]
Rubus flosculosus Focke Whole plant extract TMV [21]

Leguminosae Thermopsis lanceolata R. Br. Leaf extract TMV [21]
Juglandaceae Juglans regia Leaf extract TMV [128]
Acanthaceae Strobilanthes cusia

Glaucogenin C

TMV [14]

Anacardiaceae Rhus javanica L. var. roxburghiana (DC.) Rehd. & Willson

Syringaresinol-O-β-d-glucopyranoside

TMV [129]

Cotinus coggygria Scop. Leaf extract TMV [21]
Saxifragaceae Rodgersia podophylla A. Gray Whole plant extract TMV [21]
Ranunculaceae Semiaguilegia adoxoides (DC.) Makino Earthnut extract TMV [131]

Pulsatilla chinensis (Bunge) Regel Leaf, root, stem extract TMV [21]
Brassicaceae Thlaspi arvense L. Whole plant extract TMV [21]
Portulacaceae Portulaca oleracea L. Whole plant extract TMV [132,133]
Oleaceae Forsythia suspensa (Thunb.) Vahl Whole plant extract CMV [20]
Papilionaceae Cassia fistula TMV [53]

(continued on next page)
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Table 1 (continued)

Family Species Active ingredients Virus Reference

Fistulaflavonoids B

Fistulaflavonoids C
Satureja montana L. Essential oil and phenolic compounds TMV, CMV [63]

Caprifoliaceae Sambucus williamsii Protein TMV [33]
Verbenaceae Clerodendrum aculeatum Protein PRSV [34]
Cucurbitaceae Momordica charantia Linn. Protein ChiVMV, CMV, TMV, TuMV [134]
Papilionaceae Cyamopsis tetragonoloba (L.) Taub. Protein TMV, SRV, PRSV [35]
Meliaceae Munronia unifoliolata

Munronoids K

TMV [135]

Orchidaceae Arundina graminifolia

Gramniphenol C

Gramniphenol F

Gramniphenol G

TMV [56]

Zingiber officinale Essential oil TMV [62]
Rutaceae Lemon Essential oil TMV [62]

Tangerine peel Essential oil TMV [62]
Theaceae Camellia sinensis Essential oil TMV [62]
Crassulaceae Rhodiola eurycarpa (Frod.) S. H. Fu Whole plant extract TMV [21]

Cymbopogon citratus Essential oil TMV [62]
Poaceae Cymbopogon citratus (DC.) Stapf Essential oil TMV [62]

Achnatherum splendens (Trin.) Nevski Whole plant extract TMV [21]
Schisandraceae Schisandra rubriflora

Schisanhenol

TMV [22]

Cupressaceae Thuja orientalis leaf, shoot and fruit extract WMV [23]

20 L. Zhao et al. / Pesticide Biochemistry and Physiology 135 (2017) 15–26
antiviral resistance inducing protein from Clerodendrum aculeatum and
found its inhibiting effect on papaya ringspot virus (PRSV) infection in
Carica papaya. Vivek et al. [35] isolated a systemic antiviral resistance in-
ducing protein named CT-VIA-62, which can induce systemic resistance
against sunn-hemp rosette virus (SRV) in Cyamopsis tetragonoloba. They
found that all CT-VIA-62 peptides share homologies with the proteins
from Medicago truncatula that possess a mannose-binding lectin do-
main. Balasubrahmanyam et al. [36] isolated CCP-25 and CCP-27 pro-
teins from the leaves of Celosia cristata, which showed anti-TMV
activities, with suppression rates of 92.4% and 91.8% at the concentra-
tion of 30 μg mL−1, respectively. Pokeweed antiviral protein, a heatedly
researched antiviral protein at the end of last century, is composed of
eight alpha helices and a beta sheet consisting of six strands. It is the
main antiviral-active constituent from Phytolacca americana L., which
exhibits a broad spectrumantiviral activity against TMV, poliovirus, her-
pes simplex virus (HSV), influenza virus, cytomegalovirus and human
immunodeficiency virus (HIV) and so on. It can effectively inhibit repli-
cation of viruses at concentrations which do not suppress protein
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synthesis of the host cells [37–43]. Other plants inwhich the anti-plant-
virus effective compounds are proteins include Chenopodium
amaranticolor, and Mirabilis jalapa L. (see Table 1).

2.2.2. Alkaloids
Alkaloids are a large group of naturally chemical compounds with

diverse structures, many of which have pharmacological effects on
human or animals. Alkaloids are usually bioactive constituents
contained in many medicinal plants, especially many Chinese herbal
medicines. At present, there are more than 18,000 alkaloids that have
been discovered [44]. Wang et al. [45] separated 5 new alkaloids from
Hosta plantaginea Aschers, among which a known alkaloid 7-deoxy-
trans-dihydronarciclasine showed strong anti-TMV activity, with IC50
value at 1.80 μM. Bruceine-D, a kind of alkaloid extracted from Brucea
javanica (L.) Merr, exhibited better inhibition effect against potato
virus Y (PVY), TMV and CMV [46]. When the concentration of
Bruceine-D was 100 μg mL−1, at 15 min after incubation, the inhibition
rates for PVY and CMV in Chenopodium amaranticolor were 94.2% and
91.7%, respectively, [46]. Yan et al. [47] separated two new quassinoids
(javanicolide E and javanicolide F) and fifteen known C-20 quassinoids,
all of which showed potent anti-TMV activity. Eight compounds includ-
ing brusatol, bruceine B, bruceoside B, yadanzioside I, yadanzioside L,
bruceine D, yadanziolide A and aglycone of yadanziolide D, showed
strong antiviral activities, with IC50 values in the range of 3.42–
5.66 μM. Chen et al. [48] isolated 10 known β-carboline alkaloids and
one quassinoid in MeOH extract from the wood of Picrasma quassioides
Benn. All of them showed moderate anti-TMV activities and exhibited
synergistic effects when combined with nigakilactone B. When these
ten β-carboline alkaloids were used alone at the concentration of
50 μg mL−1, the anti-TMV rates varied from 25% to 47.4%. When
added 25 μg mL−1 of quassinoid, the anti-TMV rates were increased
and varied from 36.4% to 68.4% [48]. An et al. [49] isolated two alkaloids
with anti-TMV activities from Cynanchum komarovii Al Ilginski, i.e., 7-
demethoxytylophorine and 7-demethoxytylophorine N-oxide, with in-
hibition rate of 65% for the former at a concentration of 1.0 μgmL−1 and
60% for the latter at 500 μg mL−1.

2.2.3. Flavonoids
Flavonoids have been isolated from diverse plants [50]. They share a

common carbon skeleton of two benzene rings, which are joined by a 3-
carbon bridge (C6-C3-C6). There are about 10,000 kinds of flavonoids
that are currently known [51]. Due to the development of more sensi-
tive analysis methods, the amounts of flavonoids reported continues
to increase [50]. Gordana et al. [52] discovered that flavonoid
quercetagetin 3′-methyl ether isolated from Centaurea rupestris L.
showed prominent inhibition effect against tomato bushy stunt virus
(TBSV), with the inhibition rate of 99% at the concentration of
1 mg mL−1. Zhao et al. [53] isolated 2 new and 5 known flavonoids,
with fistulaflavonoids B and C showing high anti-TMV rates of 28.5%
and 31.3% at the concentration of 20 μM, respectively.

2.2.4. Phenols
Phenolic compounds are present in many plants, especially in

berries. These kinds of compounds include anthocyanins, procyanidins,
ellagitannins and hydroxycinnamates [54]. There are also higher levels
of phenols in tea and cotton seed. Phenols have been reported to have
many kinds of bioactivities such as free radical scavenging/antioxidant
actions, anti-inflammatory effects, anti-carcinogenic properties and
anti-microbial activities [55]. In the respect of their antiviral activities,
Hu et al. [56] isolated five new phenolic compounds from Arundina
gramnifolia, among which compounds 1 (Gramniphenol C), 4
(Gramniphenol F) and 5 (Gramniphenol G) showed anti-TMV rates of
48.2%, 35.8% and 32.1% at the concentration of 20 μM, respectively.
Zhao et al. [12] isolated gossypol from cottonseed oil sludge, which ex-
hibited good anti-TMV activity. The curative effect of gossypol against
TMVwas 54.4% at the concentration of 500 μgmL−1. Since now, because
of the distinctive antiviral effect and the inexpensive rawmaterial, Cot-
tonseed Oil Sludge extract has been successfully industrialized in China
with the brand name of ‘ZaiXiChun’, which contains gossypol as one of
the bioactive components. Wang et al. [22] isolated schisanhenol from
Schisandra rubriflora and designed a series of derivatives (1–16, 15a-
16a, and 15b-16b) by chemical modification. The anti-TMV activity
test indicated that Dibromoschisanhenol at 0.25 mM exhibited the
strongest protective activity (83.5%), and 14-(3, 5-dibenzyloxy)-
benzoyloxyschisanhenol showed a significant curative effect (78.0% at
0.15 mM), which was much stronger than that of the commercial viru-
cide Ningnanmycin at the same concentration (34.3%).

2.2.5. Essential oils
Essential oils are complex mixtures with low molecular weight,

which are usually stored in oil ducts, resin ducts, glands or trichomes
(glandular hairs) of the plants [57]. Since they are commonly used as
flavouring agents in food products, drinks, perfumeries, pharmaceuti-
cals and cosmetics [58,59], consumption of essential oils is increasing
all over the world [60]. Known for their antiseptic, fragrant and medic-
inal properties, essential oils also play an important role in the protec-
tion mechanisms of the plants as antivirals, antibacterials, antifungals
and insecticides, and so on [61]. Min et al. [62] tested the effect of 29
kinds of plant essential oils on inhibition of TMV and found that oils
from ginger, lemon, tea tree, tangerine peel, artemisia and lemongrass
had the inhibition rate of more than 50% against TMV at the concentra-
tion of 100 μg mL−1. Valerija et al. [63] discovered that carvacrol and
thymol were the major compounds of the essential oil extracted from
Satureja Montana L. ssp. Variegate (Host) P. W. Ball (Lamiaceae) and
both of them were biologically active in reducing TMV and CMV infec-
tion. When the concentrations were 4.2 mm L−1 for carvacrol and
1mmL−1 for thymol, the inhibiting rates were 34.3% and 26.1% respec-
tively against TMV, and 28.3% and 33.2% respectively against CMV.

2.2.6. Polysaccharides
Polysaccharides are carbohydrate molecules that widely exist in

plants. These molecules have an extensive range of biological activities
and have been widely investigated in recent decades due to their limit-
ed side effects, relative low toxicity and broad spectrumof biological ac-
tivity [64–66]. It has been reported that plant polysaccharides have the
capacity of anti-aging, anti-oxidation, anti-rheumatism, immune-
strengthening, hypoglycemic, anti-cancer and lipid-lowering activities
and so on [67–71]. There are also many reports on some kinds of plant
polysaccharides with the bioactivities against viruses from human and
animal, such as Lycium barbarum polysaccharide [72], sulfated
Chuanminshen violaceum polysaccharide [73], sulfated Caesalpinia ferrea
polysaccharide [74], Achyranthes bidentata polysaccharide [65],
Eupatorium adenophorum polysaccharide [75], Portulaca oleracea L.
polysaccharide [76] and sulfated astragalus polysaccharide [77]. As for
anti-plant-virus activities, burdock fructooligosaccharide, isolated from
the root tissue of Arctium lappa, has been found active in controlling
plant virus, which could induce resistance of the plants against TMV
and increase the levels of transcription of PR genes (acidic PRs) and de-
fense-related enzymes [(PAL, EC 4.3.1.5), and 5-epi-aristolochene syn-
thase (EAS, EC 2.5.1.35)] genes [78]. In their experiment, burdock
fructooligosaccharide reduced the level of TMV-CP transcripts (7.0-
fold lower compared with the control) 24 h after inoculation, induced
accumulation of hydrogen peroxide (2.2-fold higher) at the 6 h time
point and increased the concentration of SA and SA 2-O-b-D-glucoside.

3. Biogenic anti-plant-virus substances frommicroorganisms

Microorganisms are the most widely distributed organisms and is
spread throughout water, soil, air, and the surface and in vivo of all
kinds of organisms. Characterized by rapid propagation and diverse bi-
ological activities, microorganisms play an important role in material
transformation and circulation in the nature [79,80]. Fungi, bacteria
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and actinomycetes are the main microorganisms that contain anti-
plant-virus substances, and each of them is described as follows.

3.1. Fungi

The main antiviral active components in fungi are polysaccharide,
polysaccharide peptide and protein. There are a large number of fungi
that can produce polysaccharide and polysaccharide peptide. Fungal
polysaccharides and polysaccharide peptide have a wide range of bio-
logical activities and have been paid more attention in recent years
[64–66]. In the past few years, fungal polysaccharides and polysaccha-
ride peptide with antiviral activities have been extracted from Coriolus
versicolor, Coprinus comatus, Lentinus edodes (Berk.) sing, Pleurotus
ostreatus and Flammulina velutiper (Fr.) Sing (Table 2). Coriolus
versicolor polysaccharide peptide is the newly discovered fungal poly-
saccharide peptide exhibiting good anti-TMV effects. The rates of its cu-
rative effects upon TMV infection were 85.4% at the concentration of
500 μg mL−1 and 64.8% at 100 μg mL−1, respectively (see Fig. 2) [11].
Wang et al. [64] reported that lentinan showed anti-TMV activities
with curative rate of 58.7% at the concentration of 10 μg mL−1. It was
found that Coriolus versicolor polysaccharide peptide and lentinan may
promote expression of disease resistance-related enzymes in host
plants such as PAL and peroxidase and also that of the PR proteins,
thus increasing the plant's resistance and tolerance to diseases [11,64,
81]. Lentinan now has been successfully registered as an anti-plant-
virus agent in China and has become industrialization.

For fungi-derived proteins, Kulye et al. [82] selected from plenty of
pathogenic fungi with low pathogenicity, and found that Alternaria
tenuissima can effectively promote plant immunization. They isolated
a heat-stable protein with high activity, which may induce resistance
of the plant, and simulate the growthmetabolism and the immune sys-
tem of the plant. There are also other fungi that contain antiviral-active
proteins, including Lentinus edodes (Berk.) sing, Agrocybe aegerita,
Flammulina velutipes, Pleurotus citrinopileatus and Pleurotus eryngii
(Table 2). In addition, crude methanolic extracts of Neosartorya fischeri
and Penicillium oxalicum, also exhibited inhibitory activity toward
TMV [83].

3.2. Bacteria

Scince now, researchers have screened some bacteria which can in-
hibit plant virus and isolated bioactive components from them. Zhou et
al. [84] isolated bacterial strain ZH14 from Anxi Oolong, which may
Table 2
Biogenic anti-plant-virus substances from microorganisms.

Cultures Strains

Fungus Coriolus versicolor
Lentinus edodes
Alternaria tenuissima
Agrocybe aegerita
Flammulina velutipes
Pleurotus citrinopileatus
Pleurotus eryngii
Coprinus comatus
Pleurotus ostreatus
Flammulina velutiper (Fr.) Sing
Trichoderma pseudokoningii SMF2
Neosartorya fischeri
Penicillium oxalicum

Bacteria Bacillus cereus ZH14
Pseudomonas fluorescens CZ
Pseudomonas chlororaphis O6
Bacillus subtilis
Serratia marcescens Gsm01

Actinomycetes Strepcomces noursei var.-xichangensis
Streptomyces ahygroscopicus
Streptomyces sp. ZX01
produce bioactive proteins with strong resistance to TMV. Shen et al.
[85] applied Pseudomonas fluorescens CZ to control TMV and obtained
better control efficiency. Ju et al. [86] identified an antiviral cyclic pep-
tide against TMV from the cell-free supernatant of Pseudomonas
chlororaphis O6. Thapa et al. [87] discovered that culture filtrate from
Serratia marcescens Gsm01 showed anti-CMV activity. Details about
anti-plant-virus substances from bacteria resources are shown in
Table 2.

3.3. Actinomycetales

The Actinomycetales are composed of approximately 80 genera and
produce a diversity of secondary metabolites with great significance in
medicine. About more than 50% of the antibiotics identified are extract-
ed from Actinomycetales [88,89]. The most successful researches on
anti-plant-virus substances from actinomycetes are those on
Ningnanmycin and Cytosinpeptidemycin. Ningnanmycin, isolated
from Strepcomces noursei var. xichangensis, is a new cytosine nucleoside
peptide antibiotic and has been widely applied to agricultural produc-
tion. Its curative effect upon TMV infection was 58.1% at the concentra-
tion of 500 μg mL−1 [12]. It was reported that Ningnanmycin may
induce the plants to increase resistance to TMV [90].
Cytosinpeptidemycin, isolated from Streptomyces ahygroscopicus,
showed efficient anti-plant-virus activity [91,92], and has been success-
fully registered and industrialized as an anti-plant-virus agent in China.
In addition, Zhang et al. [93] isolated a novel glycoprotein GP-1 from
Streptomyces sp. ZX01, with anti-TMV rate of more than 80% at the con-
centration of 1 mg mL−1, which exhibited potential applications.

4. Anti-plant-virus substances from algae and animals

4.1. Algae

Micro- and macroalgae were one of the first discovered sources of
natural compounds that exhibit in vitro anti-HIV activity [94]. Algae in-
clude a wide variety of plants that range from diatoms characterized by
microscopic and unicellular, to seaweeds extending over 30 m. Reports
on the antimicrobial properties of seaweed extracts have been pub-
lished since the middle of last century [95,96]. Seaweeds polysaccha-
ride, especially polysaccharides from brown algae and sulfated
polysaccharides, possess efficient anti-plant-virus activities [97–100].
Alginate, an abundant polysaccharide of brown algae, exhibited inhibi-
tion rate of 95% against potato virus X (PVX) at the concentration of
Active ingredients Virus References

Polysaccharide peptide TMV [12]
Lentinan TMV [64]
Protein TMV [82]
Protein TMV [135]
Protein TMV [136,137]
Protein TMV [136,137]
Protein TMV [136,137]
Protein, polysaccharide TMV [130,138]
Polysaccharide TMV [139]
Polysaccharide TMV [139]
Antimicrobial peptide TMV [140]
Methanolic extract TMV [83]
Methanolic extract TMV [83]
Culture filtrate TMV [84]
Protein TMV [85]
Peptide TMV [86]
Culture filtrate TMV [141]
Culture filtrate CMV [87]
Ningnanmycin TMV [90]
Cytosinpeptidemycin TMV [91,92]
Glycoprotein GP-1 TMV [93]



Fig. 2. Curative effects of the Polysaccharide peptide against TMV in Nicotiana glutinosa
leaves using half-leaf methods. TMV (6 × 10−3 mg mL−1) was inoculated on the whole
tobacco leaves. Then the leaves were washed with water and dried. Polysaccharide
peptide was smeared on the left side, and purified water was smeared on the right side
for control after 6 h. The local lesion numbers were recorded 4–5 days after inoculation.
A: Polysaccharide peptide at 100 μg mL−1; B: polysaccharide peptide at 500 μg mL−1.
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10mgmL−1 [100]. Nagorskaia et al. [101] found that kappa/beta-carra-
geenan from redmarine alga Tichocarpus crinitus can suppress the infec-
tion of TMV in Xanthi-nc tobacco leaves. Wang et al. [102] and Liu et al.
[103] isolated lectin from the marine algae Ulva pertusa with the anti-
TMV activity. Pardee et al. [100] tested anti-PVX effects of methanol ex-
tracts from 30 species ofmarine algae, out of which those from6 species
exhibited inhibition rates of more than 80%, at the concentration of
10 mg mL−1.

4.2. Animals

There are much less anti-plant-virus compounds found from ani-
mals compared with those from plants and microorganisms. Among
these compounds, oligochitosan is one of the most successfully discov-
ered anti-plant-virus substances from animals, which is the product of
enzymatic hydrolysis of chitosan polymer. Chitin and chitosan have
been proved to be nontoxic, biodegradable and biocompatible, which
have been shown to induce a wide spectrum of defensive reaction in
plants [104–106]. Chitosan is the product of deacetylation of chitin
and have shown suppressing virus infection regardless of virus type as
well as plant species [107]. When at the concentration of 50 μg mL−1,
the inhibition rate of oligochitosan on TMV infection was 50.41%
[107]. Many studies found that oligochitosan inhibits infection of path-
ogens through inducing the production of nitric oxide, hydrogen perox-
ide and protein kinase and promoting phenylalanine ammonia-lyase
activity and Ca2+ signaling pathway [18,107–111]. Since now, oligosac-
charide has been registered and industrialized as an anti-plant-virus
agent in China. Moreover, Chondroitin sulfate, whey protein and its es-
terification products, andmelittin and its analogue also have anti-plant-
virus effect [99,112–114].

5. Conclusions and prospects

With the development of living level, people begin to lay stress on
quality and safety of food and problems in pesticide residue. Since bio-
genic anti-plant-virus agent is characterized by relatively safe to
human and livestock, with less pollution and less residual, it has dra-
matically sprung up in recent years. However, there are still somedisad-
vantages of biogenic anti-plant-virus substances when compared with
chemical pesticide. Firstly, the action effects of some biogenic drugs
are lower and not so rapid. It is even more so inadequate for biogenic
drugswhen a sudden and destructive disease is encountered. The bioac-
tivity declinesmore quickly and the guarantee period is short. Secondly,
biogenic pesticide should be used with high technology and therefore
there will be a process of adaptation in technical utilization for farmers.
Thirdly, the amount of some biological resources are limited, thus
restricting their large-scale exploitation and usage.
In order to solve these problems, not the only one crop or one kind of
pest should be controlled, but the systematic control scheme
concerning on all of the possible diseases, insects and weeds in one
crop should be worked out. In other words, based on the idea of green
and harmonious plant protection, an integrated pest management pro-
gramme should be established to take temporary or even radical solu-
tions. The usage of drugs was to maintain yield and quality of
agricultural products, rather than to exceedingly kill the organisms.
We should learn from the history that all plant protection activities
aiming at killing as much as possible will certainly cause the rapid in-
crease of pathogens and pests. However, some mild drugs may prelim-
inarily solve this problem, such as protein, polysaccharide, biological
medicine fertilizer and plant-based pesticide and so on. Biogenic drugs
should be used scientifically, flexibly, in time, in moderation and by
proper methods according to the weather, the characteristics of the
protected object and the occurrence dynamics of diseases and pests.

While the prospects of biogenic anti-plant-virus substances are
bright, the roadhas twists and turns.More efforts should bemade by re-
searchers in order for better usage of biogenic anti-plant-virus sub-
stances in agriculture. Firstly, the screening of biological antiviral
resources should be unceasingly expanded, in order to obtain com-
pounds or biological materials with higher activities. At present, the
amount of anti-plant-virus substances with very high efficiency and
good economic benefits is still limited, which is not able to meet the re-
quirements of agricultural development. Moreover, the existing devel-
oped plants or microorganisms constitute only a minority of the total
resources. Secondly, the structure-function relationship in bioactive
components should be further investigated, and new molecular model
should be found out, thus synthesizing highly active compounds and
providingmaterial basis for exploiting efficient biogenic agents. Thirdly,
functional mechanism of bioactive compounds and molecular targets
should be actively explored, thus providing theoretical guidance for de-
veloping new biogenic anti-plant-virus substances. Since researches on
anti-plant-virus mechanisms have beenmainly focused on inducing re-
sistance of the plants and passivating viruses [11,12,64,90,115], much
more need to be studied on some highly active compounds for their ac-
tionmechanisms. Fourthly, researches on biosynthesis methods of anti-
plant-virus compounds should be intensified, such as endophyte cul-
ture, plant cell culture and adventitious root culture, which may solve
the bottleneck problems as faced by natural resources and involved in
industrial production of biogenic agents. For example, biosynthesis of
artemisinin has reached 25 g per litre of artemisinic acid, which greatly
promoted production efficiency of artemisinin and reduced the cost
[116]. Fifthly, technical research on application of biological agents to
the field should be conducted, so that their regulation and control effect
can be brought into full play. Since now, most studies were done in the
laboratory, and there usually exists a considerable difference between
the laboratory and the field. So researches in both two should be
taken into consideration. Sixthly, industrialization of new drugs should
be started from those components which exhibit better activities and
are more easily extracted. For example, Zhao et al. [11] discovered
that polysaccharide peptide showed better anti-TMV activity than the
commercial agent Ningnanmycin, despite of protection, curative and in-
activation effects. It can be easily extracted and efficiently purified by
liquid fermentation with a low cost, making the industrialized produc-
tion feasible. Moreover, Zhao et al. [12] found acetone extract from cot-
tonseed oil sludge as a novel anti-plant-virus agent against plant viruses
and isolated gossypol from it. Since now, this extract has been further
optimized and successfully industrialized as an anti-plant-virus agent
in China. Finally, agents in medicine should be used for reference in
order to develop anti-plant-virus drugs, since medicine is more ad-
vanced than pesticides. For instance, polysaccharide peptide is good at
antitumor in medicine. However, Zhao et al. [11] applied it to plant
virus and discovered its preferable anti-TMV activity.

All in all, nowadays with the vigorous advocation of green agricul-
ture, strengthening environmental protection and developing
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sustainable agriculture, to exploit natural and biological anti-plant-virus
substances plays an important role for food safety. In the development
of pesticide science, the research and application of pesticides should re-
turn to nature, which is the inexorable trend of both social and nature
sciences. It is believed that in the near future biological agents will
greatly contribute to guarding health, purifying the environment, devel-
oping the economy and benefiting the society.
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