Cloning of heat shock protein genes (\textit{hsp70}, \textit{hsc70} and \textit{hsp90}) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, \textit{Sitodiplosis mosellana}

Weining Chenga,*, Dan Lia, Yue Wanga, Yang Liua, Keyan Zhu- Salzmanb,*

aKey Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A\&F University, Yangling, Shaanxi 712100, China
bDepartment of Entomology, Texas A\&M University, College Station, TX 77843, USA

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 23 June 2016
Received in revised form 8 September 2016
Accepted 9 September 2016
Available online 14 September 2016

\textbf{Keywords:}
\textit{Sitodiplosis mosellana}
\textit{Hsp70}
\textit{Hsc70}
\textit{Hsp90}
Diapause
Heat tolerance
Cold tolerance

\textbf{A B S T R A C T}

\textit{Sitodiplosis mosellana} Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of \textit{hsp70}, \textit{hsc70} and \textit{hsp90} from \textit{S. mosellana} larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsp genes included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of \textit{hsp90} was consistent with the known classification of insects. Expression of \textit{hsp70} and \textit{hsp90} were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, \textit{hsp70} was more strongly expressed in summer than in winter whereas \textit{hsp90} displayed the opposite pattern. Abundance of \textit{hsc70} mRNA was comparable prior to and during diapause and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae ($>30\, ^\circ\mathrm{C}$) or cold-stressed over-wintering larvae ($\leq 0\, ^\circ\mathrm{C}$) could further elevate expression of these three genes, but temperature extremes i.e. as high as $45\, ^\circ\mathrm{C}$ or as low as $-15\, ^\circ\mathrm{C}$ failed to trigger such expression patterns. Notably, \textit{hsp70} was most sensitive to heat stress and \textit{hsp90} was most sensitive to cold stress. These results suggested that \textit{hsp70} and \textit{hsp90} play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, \textit{hsc70} most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination.

* Corresponding authors.
E-mail addresses: chengwn@nwsuaf.edu.cn (W. Cheng), ksalzman@tamu.edu (K. Zhu- Salzman).

1. Introduction

Diapause is a developmental strategy that allows insects to survive harsh environment conditions and synchronize their growth pace with both abiotic and biotic factors needed for development and reproduction (Chen et al., 2005; Li et al., 2008). The diapause program involves behavioral, morphological and physiological changes that are regulated by a specific set of genes. Because of its central role in insect survival and reproduction, fully understanding the molecular mechanisms underlying diapause is vital for agricultural pest management (Denlinger, 2008).

Heat shock proteins (hsps), a group of highly conserved proteins present in almost all living organisms, function as molecular chaperones by preventing protein aggregation and promoting correct refolding of denatured proteins during environmental stresses such as extreme temperatures, heavy metals, starvation, ultraviolet radiation and anoxia (Cheng et al., 2015; Shu et al., 2011; Sørensen et al., 2003; Tungjitwitayakul et al., 2015). Based on sequence similarity and the molecular size, hsps are divided into four categories: the small hsp family with molecular masses ranging 12–43 kDa, hsp60 family with molecular mass of approximately 60 kDa, hsp70 family with molecular mass of approximately 70 kDa, and hsp90 family with higher molecular masses (Gu et al., 2012; Shen et al., 2015). Hsp70 family contains both stress-inducible and constitutively (hsc70) expressed members that share many common structural features.

In recent years, an increasing number of studies have indicated that hsp expression is not only induced by various stresses but also associated with insect diapause (Denlinger, 2002; MacRae, 2010). For example, in flesh fly \textit{Sarcophaga crassipalpis}, transcripts of...
hsp70 and hsp23 are highly abundant in diapausing pupae, and declined when diapause is terminated and post-diapause development begins (Hayward et al., 2005; Rinehart et al., 2000). By contrast, expression of hsp90 in S. crassipalpis is down regulated during diapause, but restored once new development is initiated (Rinehart and Denlinger, 2000).

Differential responses of hsp70 to diapause suggest that hsps may play different roles in diapause among different species. For instance, hsp90 is up-regulated during pupal diapause of the onion maggot Delia antiqua (Chen et al., 2005) as well as during larval diapause of rice stem borer Chilo suppressalis (Sonoda et al., 2006), thus hsp90 may be related to diapause maintenance in these species. However, it does not respond to prepupal diapause of the solitary bee Megachile rotundata (Yocum et al., 2005) nor adult diapause of the fruit fly Drosophila triauraria (Goto and Kimura, 2004). In contrast to up-regulation in S. crassipalpis and apple maggot Rhagoletis pomonella (Lopez-Martinez and Denlinger, 2008), hsp70 is down-regulated during larval diapause of the moth Sesamia nonagrioides (Gkouvitsas et al., 2009a) and shows no change when the blow fly Lucilia sericata (Tachibana et al., 2005) and bamboo borer Omphisia fuscidentalis (Tungjitwittayakul et al., 2008) go through diapause. For most insects, hsc70 is not affected by diapause (Rinehart et al., 2007; Yocum et al., 2005; Zhang and Denlinger, 2010), but it is induced during deep diapause in S. nonagrioides (Gkouvitsas et al., 2009a) and repressed in early diapause in the heads of adult mosquito Culex pipiens (Li and Denlinger, 2009).

The orange wheat blossom midge, Sitospirospus mosellana (Géhin) (Diptera: Cecidomyiidae), is one of the most important pests of wheat in the northern hemisphere (Gaafar and Volkmar, 2010; Jacquemin et al., 2014; Miao et al., 2013). Generally, it has one generation per year. In most wheat-growing areas in northern China, adults emerge and lay eggs in late April and early May. The mature larvae drop to the ground from wheat heads during mid to late May, and move into the soil to form round cocoons in which the larvae spend summer, autumn and winter in obligatory diapause. Post-diapause development is initiated in the spring in response to rising soil temperatures, indicated definitively by larvae exiting cocoons. Although several ecological and biochemical aspects of diapause in the wheat blossom midge have been documented (Cheng et al., 2009; Doane and Olfert, 2008; Hinks and Doane, 1988; Wu and Yuan, 2004), little information is available on the underpinning molecular mechanism (Gong et al., 2013).

To unravel the potential contribution of hsps to diapause in S. mosellana, in the present study, we cloned three full-length hsp genes from larvae, and examined their expression in response to diapause and to thermal stresses during diapause. Our results provide some molecular insight into diapause-related stress tolerance in S. mosellana.

2. Materials and methods

2.1. Insect collection

Larvae of S. mosellana at different developmental stages, including pre-diapause, diapause, post-diapause quiescent and developing stages, were used in this study. They were maintained at natural ambient conditions in Yangling, Shaanxi Province, China (34°16′N, 108°4′E) and collected according to the method described by Cheng et al. (2008). Specifically, wheat ears containing late instar larvae of S. mosellana were harvested and put on soil in a field insectary in late May, 2013. Pre-diapause larvae were simultaneously collected from wheat ears when the wheat was ripe in the experimental field. The soil was watered to maintain moisture for insects entering and breaking diapause. Cocooned larvae were collected monthly, from late June 2013 to late February 2014. We have discovered that almost all cocooned larvae collected in December or later could arouse and begin further development once exposed to 25 °C, indicating that by December they have entered the post-diapause quiescence (data not shown). Post-diapause developing larvae were collected in mid- and late March, when over 80% and 98% of larvae respectively exited cocoons. All larvae collected were frozen immediately in liquid nitrogen and then stored at −80 °C for cloning and real time quantitative PCR.

2.2. Temperature treatments

S. mosellana mainly goes through summer, autumn and winter as cocooned larvae between 3 and 10 cm under the soil surface (Doane and Olfert, 2008). Generally, temperatures in these habitats are lower than 30 °C in hot summer and higher than 0 °C in cold winter in Yangling district of Shaanxi province, China (34°16′N, 108°4′E). Extreme temperatures on the soil surface often exceed 45 °C in summer, and occasionally drop to −15 °C in winter, a temperature still higher than the mean super-cooling point (−23.6 °C) of S. mosellana cocoons in this region (Chen et al., 2012). To determine how the S. mosellana hsp genes respond to short-term stresses of extreme temperatures, cocoons in August were heat-treated (30–45 °C) and cocoons in December were cold-treated (0 to −15 °C) as described below.

Twenty freshly cocoons collected in late August or late December were put into 1.5 ml cryogenic vials. To generate a heat
shock, vials containing August cocoons were submerged in water bathes at 30, 35, 40 and 45 °C for 15, 30, 60 and 90 min, respectively. For cold shock, vials containing the December cocoons were placed in incubators with temperature controlled at 0, 5, 10 and 15 °C for 15, 30, 60 and 90 min, respectively. Insects collected prior to temperature treatments served as control. Upon completion of treatments at each time point for every temperature, insects were frozen immediately in liquid nitrogen and then stored at −80 °C for further molecular analysis. All treatments were repeated at least three times.

Fig. 1. Nucleotide and deduced amino acid sequences of hsp70 (A), hsc70 (B) and hsp90 (C) in Sitodiplosis mosellana. Start codons (atg) and stop codons (taa) were shaded and boxed; the putative polyadenylation signals (aataaa) were underlined. Three signature sequences in hsp70/hsc70 family were shaded and labeled I, II and III; five signature sequences in hsp90 family were shaded and labeled I, II, III, IV and V. The hsp/hsc70 C-termini region (EEVD) and hsp90 C-termini region (MEEVD) were emphasized with bold underlines. Three other typical motifs in hsp70/hsc70 proteins were boxed.
2.3. RNA extraction, cDNA synthesis and hsp cloning

Total RNA was isolated from *S. mosellana* larvae using the RNAsimple Total RNA Kit following the manufacturer’s instructions (Tiangen, Beijing, China). The quality and quantity of RNA were determined by gel electrophoresis and a spectrophotometer (Nanodrop2000c, Thermo Fisher Scientific, West Palm Beach, FL, USA). Reverse transcriptase reactions were performed with 1.0 μl total RNA as a template for first-strand cDNA synthesis using PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa, Dalian, China).

To clone cDNAs of *S. mosellana* hsp70/hsc70/hsp90, primers (Table 1) were designed based upon hsp70/hsc70/hsp90 sequences from a transcriptome dataset we obtained earlier from *S. mosellana* larvae. PCR reactions were carried out under the following conditions: 95°C for 3 min; 30 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 1 min; with a final extension at 72°C for 10 min. The PCR products obtained were separated on a 1% agarose gel. Bands with expected sizes were excised and purified by a gel extraction kit (CWBIO, Beijing, China), then ligated into a pGEM-T easy vector (Promega, Madison, WI, USA). The constructs were transformed into DH5α competent cells (Transgen Biotech, Beijing, China). Positive transformants were identified by a blue-white screening, then cultured in liquid LB culture medium. Inserts were PCR examined, followed by DNA sequencing analysis (AuGCT DNA-SYN Biotechnology, Beijing, China).

Based on the partial sequence information obtained, *S. mosellana* hsp70/hsc70/hsp90 gene-specific primers for 5′- and 3′-RACE were designed and synthesized (Table 1). The 5′- and 3′-ends of each cDNA were synthesized using 3′-Full RACE Core Set with PrimeScript™ RTase and 5′-Full RACE Kit with TAP (TaKaRa, Dalian, China) according to the manufacturer’s instructions. Nested PCR conditions for 3′RACE were as follows: 95°C for 3 min; 30 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 1 min; with an extra extension at 72°C for 10 min. For 5′-RACE, the same conditions were applied except that the outer and inner PCR cycle numbers were 20 and 25, respectively. PCR products were separated by electrophoresis, and bands with expected sizes were recovered from the gel, cloned and sequenced. Sequences obtained from RACE-PCR were used to design primers for PCR of the full-length *S. mosellana* hsp70/hsc70/hsp90 cDNAs (Table 1). The amplification conditions were as follows: 94°C for 7 min, followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 2 min, with a final extension at 72°C for 15 min. PCR products of the expected sizes were purified, cloned and sequenced as above.

2.4. Sequence analysis

Identities of the cDNA clones were determined by the BLAST search in GenBank (http://www.ncbi.nlm.nih.gov/BLAST). Open reading frames (ORF) were identified by NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Molecular weights and theoretical isoelectric points of predicted proteins were calculated by the Compute pI/Mw tool (http://web.expasy.org/protparam/). Multiple sequence alignments of deduced amino acid sequences were carried out using the DNAMAN software package (Lynnon Corporation, Pointe-Claire, Quebec, Canada). The phylogenetic tree was constructed by MEGA 5.0 software using the Neighbor-Joining method (Saitou and Nei, 1987) according to 20 full-length Hsp90 amino-acid sequences from insects.
Fig. 2. Multiple sequence alignments of the deduced amino acid sequences of Sitodiplosis mosellana hsp70 (with p as suffix), hsc70 (with c as suffix) (A) and hsp90 (B) with other insect hsp70, hsc70 and hsp90. Identical or similar amino acids were shaded black or grey. Abbreviations: Smc = Sitodiplosis mosellana hsc70, Aac = Aedes aegypti hsc70, Ccc = Ceratitis capitata hsc70, Mdc = Musca domestica hsc70, Dmc = Drosophila melanogaster hsc70, Smp = Sitodiplosis mosellana hsp70, Ssp = Stratiomys singularis hsp70, Rpp = Rhagoletis pomonella hsp70,Cpp = Culex pipiens hsp70, Ccp = Ceratitis capitata hsp70; Sm = Sitodiplosis mosellana, Ag = Anopheles gambiae, Cc = Ceratitis capitata, Bc = Bactrocera correcta, Md = Musca domestica.
2.5. Real time quantitative PCR

Real time quantitative PCR (qPCR) was used to determine expression patterns of three *S. mosellana* hsps in response to diapause and temperature stresses. Total RNA of all samples, including larvae at different stages of diapause and diapausing larvae treated by heat or cold, was extracted and cDNAs were synthesized as described above. The glyceraldehyde-3-phosphate dehydrogenase gene of *S. mosellana* (*gapdh*, GenBank number: KR733066) was chosen as a reference gene, as it displays a stable expression level throughout diapause. The qPCR reactions were performed in 20 mL total reaction volume containing 10 mL of 2× SuperReal PreMix Plus (TIANGEN, China), 0.8 mL each of the gene-specific primers (Table 1), 1 mL of the cDNA template and 7.4 mL of ddH2O. Reactions were carried out on the iQ5 real-time PCR detection system (Bio-Rad, Hercules, CA) at the following conditions: 95°C for 15 min followed by 40 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s and extension at 72°C for 30 s. The melting curve was used to confirm the specific PCR amplification. Three biological replicates were conducted for each sample.

Transcript levels of each gene were estimated from the Ct (cycle threshold) value ([Walker, 2002](#)), and normalized with *gapdh* gene. The relative mRNA levels were calculated using the 2^-ACT_ formula ([Livak and Schmittgen, 2001](#)). Data were expressed as means ± SE and analyzed using a one-way ANOVA followed by Tukey’s multiple range test for pairwise comparison (*P* < 0.05). All analyses were carried out using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Characterization of hsp70/hsc70/hsp90 cDNAs

The full-length cDNA sequence for hsp70 obtained from *S. mosellana* larvae is 2199 bp long and contains a 1926 bp open reading frame (ORF) starting at nucleotide 117 and ending at nucleotide 2042 ([Fig. 1A](#)). The polypeptide deduced from the ORF comprises 641 amino acid residues with a predicted molecular weight of 70.4 kDa and a putative pl of 5.48. It has a putative polyadenylation signal (ataaa) at nucleotides 2161–2166. This *S. mosellana* gene was assigned GenBank accession number KJ833066. The full-length cDNA sequence of hsc70 is 2228 bp ([Fig. 1B](#), GenBank accession number KW04659). The 1956 bp ORF starting at nucleotide 117 and ending at nucleotide 2072 encodes a 651 amino acid protein with a predicted molecular weight of 70.0 kDa and a pl of 5.28. The putative polyadenylation signal is located at nucleotides 2161–2166. This *S. mosellana* gene was assigned GenBank accession number KJ833066.
Likewise, the full-length cDNA sequence of hsp90 is 2412 bp (Fig. 1C, GenBank accession number KJ813012). The 2148 bp ORF starting at nucleotide 150 and terminating at nucleotide 2297 encodes 715 amino acid residues with a calculated molecular weight of 82.0 kDa and a pl of 5.02.

3.2. Characterization of hsp70/hsc70/hsp90 protein sequences

All three signature sequences of the hsp70 family (Sonoda et al., 2006) were discovered in the deduced amino acid (a.a.) sequences of the cloned hsp: hsp70: IDLGTTTY (a.a. 9–16), IFLDGGETDVSL (a.a. 197–210), and IVLGGSTRIKPIQ (a.a. 335–349 in hsp70) or IVLGGSTRIKPQK (a.a. 334–348 in hsc70) (Fig. 1A and B). Also, their C-termini have the conserved EEDV motif (Fig. 1A and B), which enables hsp/hsc70 to interact with other co-chaperones (Daugarrd et al., 2007). In addition, three other typical motifs were identified: an ATP/GTP binding site motif AEAYLGTK (a.a. 131–138) (Saraste et al., 1990), a deduced bipartite nuclear localization signal KRRKYKDLITNPRALRKL (a.a. 247–264) and PRALRLLRTAERKTR (a.a. 258–275) in hsp70 or KRRKKDLISNEKRLKL (a.a. 246–263) and KRALRLLRTAERKTR (a.a. 257–274) in hsc70 (Sonoda et al., 2006), and a non-organellar consensus motif RARFEEL (a.a. 300–306 in hsp70 and a.a. 299–305 in hsc70) (Zhang and Denlinger, 2010).

3.3. Sequence comparison and phylogenetic analysis

Multiple sequence alignment indicated that the deduced amino acid sequences of the cloned hsp70 contains all five hsp90 family signatures (Gupta, 1995): NKEIPRE-LISNLADILKIR (a.a. 28–48), LCTIASKCT (a.a. 95–103), GGFGVGPSAQLV (a.a. 119–134), IKLYVRRFVI (a.a. 344–353) and GVVDSDELPLNISRE (a.a. 370–384). The pentapeptide MEEVD LISNASDALDKIR (a.a. 28–48), LGTIAKSGT (a.a. 95–103), QIVLVGGSTRIPKVQK (a.a. 334–348 in hsp70) and IVLVGGSTRIPKV (a.a. 335–349 in hsp70) to interact with other co-chaperones (Saraste et al., 1990), a deduced bipartite nuclear localization signal KRRKYKDLITNPRALRKL (a.a. 247–264) and PRALRLLRTAERKTR (a.a. 258–275) in hsp70 or KRRKKDLISNEKRLKL (a.a. 246–263) and KRALRLLRTAERKTR (a.a. 257–274) in hsc70 (Sonoda et al., 2006), and a non-organellar consensus motif RARFEEL (a.a. 300–306 in hsp70 and a.a. 299–305 in hsc70) (Zhang and Denlinger, 2010).

3.4. Expression of hsp70/hsc70/hsp90 during diapause

To determine the diapause-associated expression profiles of S. mosellana hsp70/hsc70/hsp90, the transcript levels of each gene were compared in four larval stages relating to diapause: pre-diapause, diapause, post-diapause quiescence and post-diapause development (Fig. 4).

The expression patterns of hsp70 and hsp90 were similar in the course of diapause. Transcripts of both genes were dramatically up-regulated upon entry of diapause (June), remained high throughout diapause (June-November) and early-to-mid phase of post-diapause quiescence (December and January), but greatly declined at the late quiescent stage (February), and returned to the pre-diapause level (May of previous year) at the post-diapause developmental stage (March). The highest expression level was observed in July and August (summer) followed by December (winter) for hsp70, and vice versa for hsp90 (Fig. 4A and C).

In contrast, hsc70 expression did not change after entering diapause. But expression began to increase from November, a transition time from diapause to post-diapause quiescence, with a peak in December and January and thereafter a progressive decrease. Once post-diapause development began, expression returned to the pre-diapause level (Fig. 4B).

3.5. Expression of hsp70/hsc70/hsp90 under high temperature stress during diapause

Three genes showed differential expression patterns when over-summering diapausing larvae were subjected to high temperature treatments. Compared with the control, the expression of hsp70
was greatly induced at the temperatures range 30–40 °C, with the highest level at 35 °C (approximately 10.3-fold) (Fig. 5A). Up-regulation of hsp90, however, was found at 30–35 °C and the maximum expression value (approximately 4.5-fold) was found at 30 °C (Fig. 5C). For hsc70, the expression increased only 2.5-fold at 30 °C (Fig. 5B). Such induction was not observed at 45 °C for any of the hsps.

Treatment duration also affected transcript levels of hsp70/hsc70/hsp90. At 35 °C, hsp70/hsc70/hsp90 expression significantly increased at 30 min, and reached a maximum at 60 min (Fig. 6A and C). Expression of hsc70, however, did not show a significant change in all treatment times examined (Fig. 6B).

3.6. Expression of hsp70/hsc70/hsp90 under cold stress during diapause

Cold treatment also affected hsp70/hsc70/hsp90 expression of over-wintering diapausing larvae. Exposure of insects to 0–10 °C greatly elevated hsp70/hsc70/hsp90 expression, with the maximum value at −5 °C with 8.0-fold and 7.7-fold increases, respectively; but −15 °C failed to do so (Fig. 7A and C). Notably, expression level of hsc70 also increased remarkably at −5 °C (approximately 2.9-fold), but no evident change was observed when treated at 0 °C, −10 °C and −15 °C relative to the control (Fig. 7B).

At −5 °C, significant increases in expression were detected for hsp70 and hsc70 at 15 min and 30 min, respectively. They reached a peak at 60 min (Fig. 8A and B). For hsp90, expression level significantly increased as the treatment duration increased (Fig. 8C).

4. Discussion

Hsps play important roles in various stress responses, especially in heat/cold adaptation in insects (Hu et al., 2014; Kang et al., 2009). It has been shown that hsps participate in diapause in a manner that is species-dependent (MacRae, 2010). S. mosellana escapes temperature extremes in the summer and in the winter
by undergoing diapause. Thus, understanding how *S. mosellana* hsp genes respond to diapause and thermal stresses at the molecular level is of great importance. In the current study, we cloned full-length cDNAs of three hsp genes, *hsp70*, *hsc70* and *hsp90* from *S. mosellana* larvae and determined their expression patterns in response to diapause and further short-term stresses of extreme temperatures. Differing from many molecular studies on insect diapause, insect samples at all developmental stages used here including pre-diapause, diapause, post-diapause quiescence and post-diapause development, were collected from field, presumably more closely reflecting natural situation.

As expected, three *S. mosellana* hsps share high sequence similarities with their counterparts from other insects, and include all conserved signature motifs that facilitate interaction with other proteins and enhance their chaperone function (Figs. 1 and 2) (Daugarrd et al., 2007; Pearl and Prodromou, 2006). The characteristic of highly conserved sequences makes hsp genes widely used for evolutionary and phylogenetic analysis. Hsp90 is especially useful in this regard since a single gene copy is present in many insects (Gkouvitsas et al., 2009b; Theodoraki and Mintzas, 2006; Zhang and Denlinger, 2010), thus reducing the complication of dealing with isoforms. Here, the phylogenetic tree was built based on twenty full-length hsp90 amino acid sequences of known insects. Our results showed that Diptera, Lepidoptera, Coleoptera and Hemiptera were well segregated from each other, and even the superfamilies Tephritoidea, Muscoidea, Ephydroidea, Opomyzoidae, Stratimomyzoidae, Sciaroidea and Culicoidea were also well separated within the Diptera, further supporting that hsp90 protein allows good phylogenetic analysis at the superfamily level (Zhang and Denlinger, 2010).

Similar with patterns observed in *D. antique* for *hsp70* and *hsp90* (Chen et al., 2005, 2006) and in *S. crassipalpis* for *hsp70* (Hayward et al., 2005), *S. mosellana* *hsp70* and *hsp90* expression were highly up-regulated from the onset of diapause through diapause and expression decreased after the resumption of overt development (Fig. 4A, C). It has been proposed that diapause up-regulated hsps may be directly involved in cell cycle arrest (Denlinger, 2002). Elevated expression of two small hsps and *hsp70* has been directly linked to cell cycle arrest or retardation in *Drosophila melanogaster* (Feder et al., 1992; Krebs and Feder, 1997). Presumably, *S. mosellana* *hsp70/hsp90* may also perform that function in regulation of diapause.

S. mosellana *hsp70* and *hsp90* are also clearly induced by seasonally high and low temperatures (Fig. 4), suggesting that they may

Fig. 5. Expression profiles of *Sitodiplosis mosellana* *hsp70* (A), *hsc70* (B) and *hsp90* (C) in response to heat shock in diapausing larvae collected in August, exposed to 30–45 °C for 1 h. Expression level of each treatment was relative to that of the untreated control (UC), which was arbitrarily set at 1. Bars represent the average ± SE. One-way ANOVA analysis results for *hsp70*, *hsc70* and *hsp90* were *df* = 4, *F* = 128.33, *P* < 0.001; *df* = 4, *F* = 4.69, *P* = 0.022 and *df* = 4, *F* = 35.06, *P* < 0.001, respectively. Values followed by the different small letters were significantly different by Tukey’s multiple range test (*P* < 0.05).

Fig. 6. Expression profiles of *Sitodiplosis mosellana* *hsp70* (A), *hsc70* (B) and *hsp90* (C) in response to heat shock in diapausing larvae collected in August, exposed to 35 °C for 0–90 min. Expression level of each treatment was relative to that of the untreated control (0 min), which was arbitrarily set at 1. Bars represent the average ± SE. One-way ANOVA analysis results for *hsp70*, *hsc70* and *hsp90* were *df* = 4, *F* = 143.96, *P* < 0.001; *df* = 4, *F* = 3.33, *P* = 0.056 and *df* = 4, *F* = 23.01, *P* < 0.001, respectively. Values followed by the different small letters were significantly different by Tukey’s multiple range test (*P* < 0.05).
play important roles in survival of over-summering and over-wintering individuals. In *S. crassipalpis*, up-regulation of *hsp70* has been shown to be directly associated with enhanced cold-hardiness of over-wintering individuals (Rinehart et al., 2007). Complementary expression patterns of *hsp70* and *hsp90* in winter and summer (Fig. 4) imply that *hsp70* may be more prominent for heat tolerance and *hsp90* for cold tolerance.

Expression of *S. mosellana hsc70* is not affected by diapause initiation, but winter low temperature, a necessary factor to terminate diapause under natural conditions, apparently induces expression (Fig. 4B), contrasting to other insects including *C. pipiens* (Li and Denlinger, 2009), *S. crassipalpis* (Rinehart et al., 2007), *M. rotundata* (Yocum et al., 2005) and *Helicoverpa zea* (Zhang and Denlinger, 2010). Larval and pupal diapauses are also known to be directly regulated by ecdysteroids, and interestingly in *M. sexta* *hsc70* expression is regulated by 20-hydroxyecdysone, and a rapid increase of ecdysteroid synthesis in stimulated prothoracic gland is accompanied by increased protein synthesis, including *hsc70* (Rybczynski and Gilbert, 1995, 2000). In addition, *hsc70* participates in the 20-hydroxyecdysone signal transduction pathway via binding to the ecdysone receptor protein USP, as exemplified by *H. armigera hsc70* (Zheng et al., 2010). Furthermore, ecdysteroid titers in *S. mosellana* diapausing larvae are significantly higher in December and January than other diapause periods (Cheng et al., 2009), which is correlated with the *hsc70* expression pattern we observed here. Presumably, high ecdysteroid titers in *S. mosellana* may be essential for up-regulation of *hsc70*. Because the up-regulation of *S. mosellana hsc70* is initiated at an early stage in the transition from diapause to post-diapause quiescence (Fig. 4B, it thus may serve as a reliable molecular marker denoting this transition.

Heat-stressed over-summering larvae or cold-stressed over-wintering larvae rapidly raised expression of *S. mosellana hsp70* within a short period (Figs. 5–8). Similar results were also seen in other insects, such as *D. antiqua* (Chen et al., 2005, 2006) and *Lymantria dispar* (Denlinger et al., 1992; Yocum et al., 1991). Clearly, the maximum level for expression under heat stress is at 35°C for *hsp70*, and when temperatures reach 45°C, the expression of all three genes is no longer induced (Fig. 5). One hour exposure to 47.5°C led to death of *S. mosellana* cocooned larvae (Sokhansanj et al., 1992), indicates that hsp expression cannot prevent death under severe temperature stresses, even for a short period of time. This may explain the mode of action of the cultural control methods that elevate soil temperature; the summer fallow season reduces *S. mosellana* populations by direct sunshine on the soil, while tillage bring the insects to the soil surface, where the temperature in the summer is higher than it is several centimeters below the surface (Barnes, 1941; Yuan, 2004).
In summary, we have demonstrated developmental and environmental regulation of *S. mosellana* hsp70. Transcripts of hsp70 are diapause up-regulated, while that of hsc70 is up-regulated during the transition to post-diapause quiescence, a response possibly associated with the high ecdysonoid titer during this period. Expression of hsp70 is also highly responsive to heat/cold during diapause, but not to extreme high/low temperature. These results provide some molecular insight into the diapause mechanism and stress tolerance to ecologically relevant environmental temperature in *S. mosellana*.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 31371933), and by Science and Technology Innovation Project from Northwest A&F University, China (Grant No. ZD2012003).

References

